
Riffle: Reactive Relational State for Local-First Applications
Geoffrey Litt

Massachusetts Institute of Technology
Cambridge, MA, USA

glitt@mit.edu

Nicholas Schiefer
Anthropic

San Francisco, CA, USA
schiefer@mit.edu

Johannes Schickling
N/A

Berlin, Germany
schickling.j@gmail.com

Daniel Jackson
Massachusetts Institute of Technology

Cambridge, MA, USA
dnj@mit.edu

ABSTRACT
The reactive paradigm for developing user interfaces promises
both simplicity and scalability, but existing frameworks usually
compromise one for the other. We present Riffle, a reactive state
management system that achieves both simplicity and scalability by
managing the entire state of a web application in a client-side persis-
tent relational database. Data transformations over the application
state are defined in a graph of reactive relational queries, providing
developers with a simple spreadsheet-like reactivity model. Domain
state and UI state are unified within the same system, and efficient
incremental query maintenance ensures the UI remains respon-
sive. We present a formative case study of using Riffle to build a
music management application with complex data and stringent
performance requirements.

CCS CONCEPTS
• Human-centered computing → User interface program-
ming; • Information systems→ Data management systems.

KEYWORDS
UI State Management, Reactive Programming, Relational Databases
ACM Reference Format:
Geoffrey Litt, Nicholas Schiefer, Johannes Schickling, and Daniel Jackson.
2023. Riffle: Reactive Relational State for Local-First Applications. In The
36th Annual ACM Symposium on User Interface Software and Technology
(UIST ’23), October 29-November 1, 2023, San Francisco, CA, USA. ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3586183.3606801

1 INTRODUCTION
A key part of application development ismanaging state: displaying
a view of the application’s data and keeping that view updated
over time. One powerful abstraction for defining such views is
reactive data transformation, as seen in early UI frameworks like
Garnet [19] and inmodern frameworks such as React.js. In a reactive
system, a developer declaratively specifies data transformations and
dependencies, freeing them from manually propagating updates.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0132-0/23/10.
https://doi.org/10.1145/3586183.3606801

The concept of reactivity is well known in spreadsheets, arguably
the most successful paradigm for allowing users of all levels of skill
to build software. In fact, prior work [3, 4] has shown that spread-
sheets themselves can even be used as a substrate for specifying
reactive data transformations that power simple GUI applications.

In practice, however, real-world applications tend to requiremore
complex mechanisms than a spreadsheet to define reactive dataflow,
for two main reasons. First, most spreadsheet languages lack the
expressive power needed to code a complex application. Second,
many real-world applications handle large amounts of data and
have strict performance requirements. As a result, state tends to be
spread across many layers—a database, an ORM, a client-side cache,
in-memory state, etc.—losing the simplicity of a reactive system and
forcing the developer to reason across many layers of abstraction.
Reactivity is often present in part of the stack (e.g., at the view
layer), but not throughout. The core simplicity of “application as
spreadsheet” has been lost.

This paper describes a novel architecture for application state
management which both provides a simple declarative program-
ming model and scales up to meet the needs of complex real-world
applications (Figure 1). Our work makes the following contribu-
tions:

1) Reactive Relational Architecture.We describe an architec-
ture with two key concepts (Section 3):

• Reactive relational queries. Data transformations are rep-
resented by a directed acyclic graph of relational queries.
Reactivity ensures that updates propagate automatically
through the graph without intervention from the developer.
Relational queries let the developer provide high-level declar-
ative specifications of transformations while benefiting from
performant query execution.

• Synchronous transactional updates. Whenever a write
occurs to the database, downstream dependencies are syn-
chronously updated within a transaction. Since UI state and
domain state are both handled in the same system, we can
guarantee that the UI and all state visible to the programmer
is always in a consistent state, without inconsistencies across
parts of the view.

We use a local-first [10] architecture where all of an application’s
state is stored in a persistent client-side relational database. All
updates, whether to domain state or UI state, flow synchronously
through this database. In the background, data can be synchronized
over a network.

1

https://doi.org/10.1145/3586183.3606801
https://doi.org/10.1145/3586183.3606801

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Geoffrey Litt, Nicholas Schiefer, Johannes Schickling, and Daniel Jackson

Figure 1: An overview of the Riffle architecture. The UI visualizes the results of a reactive graph of relational queries on a
persistent client-side relational database. The dataflow loop runs synchronously on the UI thread, supporting fast, transactional
reactivity. In the background, the local relational database is synchronized with other data sources over the Internet.

2) Implementation.We demonstrate a working implementa-
tion of these ideas in a TypeScript library that provides APIs for
application developers to specify data transformations using reac-
tive relational queries. To ensure responsiveness we build on top
of SKDB1, a relational database that supports efficient incremental
updates, as well as network synchronization of data.

3) Case study. We describe a formative case study where Riffle
has been used over the course of a year to develop Overtone, a
professional music management application. The resulting appli-
cation demonstrates how Riffle scales up to support large volumes
of data and stringent performance requirements, while preserv-
ing simplicity for the developer and speed and reliability for the
end-user (Section 6).

4) Heuristic Analysis. To further analyze the benefits and
tradeoffs of Riffle, we present a heuristic analysis following Olsen’s
criteria for evaluating systems research [21] (Section 7).

Riffle suggests a new way of thinking about application devel-
opment by tightly coupling the UI to a fast, reactive client-side
database that supports ergonomic queries. Looking ahead, this ap-
proach also lays the foundation for future benefits like end-user
customization and data-centric interoperability across applications.

2 BACKGROUND AND RELATEDWORK
The complexity of state management. Today, application de-
velopers bear much of the complexity of managing state in their
applications. Most web applications have a multi-layer architecture
involving at least three programs running on different comput-
ers: e.g., a client written in JavaScript, a server written in Python,
and a database queried with SQL. Developers must wrangle data
across these layers, manipulating copies of the same information
in different representations. They must manually manage the net-
work boundary, including appropriately handling latency or failures.
State is often persisted in various caches along the way to improve

1https://skdb.io/

performance. Reactivity may exist within the view layer, but often
does not span across the entire stack. In addition to requiring te-
dious effort, application-level state management code is a common
source of bugs [2].

Riffle proposes a simpler architecture by building on advances
in three related research areas.

Reactive UI. In the space of web applications, we can roughly
differentiate between client-side and full-stack approaches to reac-
tive dataflow.

Client-side reactivity:A vast number of frameworks have been de-
veloped for maintaining reactive dataflow within the UI client. The
idea goes back at least to early UI frameworks like Garnet [18, 19],
as well as functional reactive programming libraries like Flapjax
[16] and Vega-Lite [24]. Modern web view templating layers like
React.js provide automatic reactive maintenance of UI trees; state
management libraries such as MobX, Recoil, Jotai, and Datascript
provide additional utilities for managing state and reactive depen-
dencies outside the UI tree.

Riffle shares the basic idea of these tools but has two important
differences. First, Riffle applies reactive relational queries to the
user’s entire dataset (which has been synchronized to the client
device) rather than only offering reactivity over a small partial
subset of the user’s data like most tools for reactive UI on the
web. Second, Riffle allows users to write relational queries, which
are more declarative and easier to automatically optimize than
transformations written in general-purpose languages.

Full-stack reactivity: These systems provide developers with sim-
pler abstractions for managing the entire stack of a client-server
system, in particular providing automatic reactivity across the net-
work. Quilt [3] and Object Spreadsheets [14] give end-users tools
to define web applications that can persist data to a server back-
end, while defining data transformations in a spreadsheet interface.
Links [6] and Ur/Web [5] implement a “tierless” web development
pattern, where a single statically typed functional program is com-
piled into programs that run on the database, the server, and the

2

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA

client. Commercial systems like Meteor, Firebase, Convex, and Elec-
tric Clojure offer a variety of tools formanaging automatic reactivity
across the client-server boundary.

Local-first software. Riffle shares the goal of the systems above
of reducing the burden of manual network management, but with
a major difference in its approach. In most full-stack web frame-
works, the network is kept as a core part of each user interaction;
in contrast, Riffle uses an architecture known as local-first [10] in
which local client-side data is treated as a source of truth that can
be queried or written to at any time, and is synchronized across the
network in the background when a connection is available. This
architecture can support fast interaction latencies and good offline
support because interactions primarily proceed on the local client.

The local-first model is a good fit for applications that help man-
age personal information, or collaborative work with a small team.
For example, the local-first architecture has been applied to a note-
taking app, a budgeting app2, an issue tracker3, an email client4,
and an RSS reader5. Our music manager case study in Section 6 also
fits this profile. In these applications, the benefits of fast, reliable,
offline-capable UI are particularly salient—they manage important
information for serious use, and are accessed repeatedly throughout
a day. These are also applications where all the state relevant to a
user is small enough to be replicated fully to the client. In contrast, a
social network or an e-commerce site might be a more challenging
context in which to apply a local-first architecture; we expand more
on the limits of the local-first pattern in Section 8.1.

Our approach proposes a tighter coupling between the user in-
terface and the data storage layer than most existing local-first
systems. Existing frameworks typically preserve a distinction be-
tween UI state and domain state—this resembles the split between
client and server state in the traditional web architecture, but with
both parts contained within the client. In contrast, Riffle takes ad-
vantage of the presence of local data and unifies all state into a
single system, enabling benefits such as synchronous transactional
updates explained below.

Another difference between Riffle and existing tools is the sup-
port for a relational data model. Many prominent libraries sup-
porting local-first software, such as Automerge, Yjs, PouchDB, and
Replicache, use a simple document data model which lacks sup-
port for executing relational queries. Some systems like TinyBase,
VLCN, and Electric SQL6 do provide a relational model, but do not
tightly couple the UI and database to the extent that Riffle does.

Incremental view maintenance. Riffle builds on decades of
work on materialized views [9] and incremental view maintenance
(IVM) in database systems. Summarizing the extensive literature
on IVM is beyond the scope of this paper; we refer the reader to
[26] for a survey of classic IVM techniques. Some form of IVM
can be found in most mature, commercial relational database man-
agement systems (RDBMSs) such as Oracle, Microsoft SQL Server,
and DB2. Typically, IVM is implemented only for a subset of the

2https://actualbudget.com/
3https://linear.app/
4https://superhuman.com/
5https://readwise.io/read
6https://electric-sql.com/

SQL query language7: for example, it is not common to support
incremental view maintenance for correlated subqueries or recur-
sive computed table expressions, though techniques for these are
known [1, 8]. Other systems, such as Noria [7], add IVM on top of
existing databases.

In the past decade, several new databases built specifically for
efficient, low-latency, and universal IVM have been developed.
Materialize is a data warehouse designed specifically to support
low-latency IVM of complex SQL queries, building on the timely
dataflow [17] and differential dataflow [15] incremental computa-
tion frameworks. SKDB, the embedded database we use in Riffle,
achieves fast IVM through Skip8, a programming language that of-
fers native support for dependency tracking and cache invalidation.

3 RIFFLE CONCEPTS
The two main concepts in the Riffle architecture are reactive rela-
tional queries and synchronous transactional updates. In this section
we motivate those concepts and explain how they benefit both
developers and end-users.

3.1 Reactive relational queries
A significant fraction of application code is spent transforming
state to display in the user interface—for example, joining together
and grouping data about tracks, albums and artists, to show in a
playlist view in a music player.

Riffle’s abstraction for these kinds of data transformations needs
to balance two seemingly conflicting goals. First, in order for UI
state updates (like hover, selection, and clicks) to feel responsive,
Riffle must offer very low latencies, similar to those that might
be achieved by explicitly coding all interactions imperatively in
a low-level language. At the same time, Riffle must also provide
high-level abstractions that are friendly for application developers,
without requiring a deep understanding of systems programming
and performance optimization.

To resolve this tension, Riffle takes inspiration from two sources,
reactive programming and relational queries, which each provide
declarative abstractions to programmers along different dimen-
sions:

• Reactive programming enables the programmer to declar-
atively specify a function over state, and then implements
efficient updates of that function when the state changes.

• The relational model makes individual data transformations
declarative, since programmers can specify a logical query
and let a database execute it efficiently

In Riffle, we combine these two kinds of declarative programming
in reactive relational queries. A Riffle application is defined by a
graph of relational queries, maintained through reactive updates.
The application developer describes a directed acyclic graph of data
transformations, primarily as relational queries in a SQL-like query

7https://docs.oracle.com/database/121/DWHSG/refresh.htm#DWHSG8372,
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-refresh-sql-
command.html
8http://skiplang.com/

3

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Geoffrey Litt, Nicholas Schiefer, Johannes Schickling, and Daniel Jackson

language, including business logic that would normally be written
in a non-relational language.9

The results of these queries are automatically kept up-to-date
through a reactive programming system. In order to update fast
enough, the individual queries in the graph must also be run on a
reactivity-aware database that offers efficient, fine-grained reactiv-
ity within a query.

When combining reactivity and relational queries, the two forms
of declarativity described above reinforce each other—it is easier to
implement incremental algorithms for relational queries than it is
for imperative code with mutable state, and relational queries also
present a simple programmer-facing abstraction over the complex
internal logic driving incremental updates. This allows us to take
advantage of the decades of database research on performantly in-
dexing and querying relational tables without requiring application
developers to understand the details of systems programming.

Despite this natural connection, combining reactivity and re-
lational queries has seen only minimal adoption in application
development frameworks, even as reactive programming models
have becoming widely adopted for building applications. The core
observation behind Riffle is that reactive relational queries are a nat-
ural and powerful abstraction for specifying data transformations
in applications.

3.2 Synchronous transactional updates
Synchronous transactional updates ensure that, in the typical flow of
using an application, the UI is always both consistent and responsive.

Consider the scenario depicted in Figure 2. There is an applica-
tion whose UI includes a sidebar that selects the content shown in
the main pane. At first, Item A is shown in the main pane; then, the
user clicks on Item B in the sidebar. How does the UI react?

Typical web app. In a single-page web application (SPA), data
is often only loaded after the user interacts (Figure 2, left side).
Before showing Item B in the main pane, the UI must wait for
roundtrip network traffic, as well as time spent on the backend
server and database to query and serve the relevant data. The
obvious downside is latency for the user, but there is a more subtle
problem: the UI is in an inconsistent intermediate state, since Item
B is selected in the sidebar, but Item A is still shown in the main
pane. This adds new states to the system that the developer and
the user must reason about.10

Riffle’s approach. In contrast, using Riffle, all the data needed
by the user is synchronized ahead of time to a client-side data-
base (Figure 2, right side). Because the data for pane B is already
preloaded into a database running within the UI process, the appli-
cation is able to quickly render a final state that reflects the user’s
interaction. The architecture enforces consistency throughout the

9Recognizing the limitations of existing relational query languages like SQL, Riffle
also allows developers to write queries in GraphQL or as pure TypeScript functions.
See Section A.
10There are other design options available that make different tradeoffs between
responsiveness and consistency, but there is no way to avoid the latency of data
loading. For example, in a traditional server-rendered “multi-page” web app (MPA),
this user interaction would trigger a new page load, and the browser would show
a blank loading screen before showing the new consistent page. This architecture
prioritizes consistency more than the SPA, since the sidebar and main pane always
match each other, but it sacrifices responsiveness, since nothing is shown while the
data loads.

execution; the sidebar and the main pane must always reflect the
same state.

Coordinating UI state and domain state. Synchronous trans-
actional updates are enabled by Riffle’s approach of storing UI and
domain state together. In many application frameworks, UI state
and domain state are managed in separate layers separated by an
asynchronous boundary, making transactional coordination or im-
possible. In contrast, in Riffle, managing both UI state and domain
state inside a single reactive database makes it possible to achieve
transactional consistency.

Response times. Nielsen defines 100ms as the rough response
time limit for an action to feel instantaneous to a user [20]; some
applications like Superhuman aim for under 50ms11. Riffle aims
to fall well within these limits by usually responding to user ac-
tions within 16ms (representing a single frame on common 60fps
displays), and treating 100ms as an upper limit. Notably, removing
network latency from an interaction is necessary but not sufficient
for responsiveness; recomputing queries must also be fast, which
we support through reactive relational queries.

The limits of synchrony.While a local-first architecture avoids
the frequent sources of asynchrony seen in typical web applications,
we cannot always avoid asynchronous calls—e.g. requests to an
external API or running a slow computation.

We model these processes as asynchronous side effects outside
of the synchronous update cycle. When an asynchronous effect
completes (e.g., a networked API responds with data), that may
trigger an update on the synchronous state, just as a user interaction
would. Segregating asynchrony in this way preserves the simplicity
of the core synchronous update loop.

4 SYSTEM IMPLEMENTATION
Riffle provides data management abstractions that sit between ex-
isting systems at the view layer and the database layer. We use
React.js as a view framework to handle outputting UI to the browser
DOM, and SKDB as a relational database which handles queries (in-
cluding incremental view maintenance), persistence, and network
synchronization. The Riffle library provides APIs that the applica-
tion developer uses to bind data and queries to UI components, and
contains an implementation of a reactive update graph that tracks
dependencies between queries to efficiently schedule updates. We
elaborate further on the details of the implementation in Appendix
A.

5 RIFFLE BY EXAMPLE: TODO LIST
In this section, we demonstrate how the Riffle concepts apply in
practice, by implementing TodoMVC, a small reference application
commonly used to compare UI and state management tools. We
walk through developing a relational data schema, specifying a
reactive query graph, and binding the queries to the user interface.

Relational schema. Designing a relational schema for a Rif-
fle application is similar to designing a schema for the backend
database of any web application. One difference from traditional
data modeling is that our UI state will eventually be modeled in the
relational schema, but for now, we begin by modeling our domain

11https://blog.superhuman.com/superhuman-is-built-for-speed/
4

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA

Figure 2: In a single-page web application, user interactions frequently incur network latency and leave the UI in a temporarily
inconsistent state. In contrast, Riffle’s local-first architecture and synchronous transactional updates enable faster responses.
The UI can respond to the interaction immediately without showing inconsistent loading states because the data was synchro-
nized to the client before the user explicitly requested it, and database queries are efficiently updated within 16ms.

state: a todos table with schema id: string; text: string;
completed: boolean.

A simple reactive query. To display the list of todos in our data-
base, we can define a reactive SQL query, select * from todos;,
that loads all the todos. We write it inside a React component using
a hook12 provided by Riffle called useRiffleComponent:

export const MainSection = () => {

const { todos } = useRiffleComponent({

queries: ({ rxSQL }) => {

todos: rxSQL(sql`select * from todos`)
}

}

return <ul className="todo-list">

{todos.map((todo: Todo) =>

(<li key={todo.id}>{todo.text}))}

}

This hook establishes a subscription to the results of this reactive
query, and returns a list that we can use in the view template. Every
12Hooks are a standard mechanism in React for mixing in state and behavior to a
component.

time the contents of the todos table change, this component is re-
rendered with the new list. React.js handles reactivity at the view
layer: it computes a virtual DOM representing the newUI structures,
diffs this against the previous virtual DOM for the component, and
then efficiently applies minimal (expensive) changes to the browser
DOM.

Because the todos table is managed by an underlying instance
of the SKDB database, it is also automatically 1) persisted locally
and 2) synchronized over the network.

Storing UI state. Next, we need a text box where the user can
type in text for a new todo. Typically, in React, the state of the input
box would be treated as local in-memory state, but in Riffle, we
instead model this UI state in the database.

We create a new table ui_state, with a single text column
named newTodoText. To read the value, we define a reactive query
which subscribes to the value. (We use a Riffle helper called asScalar
which extracts a value from a single-row, single-column table.)

To update this value, we can define a write event in the database
schema named updateNewTodoText which performs a SQL update.
(Write events provide a thin abstraction over SQL statements be-
cause the same updates are sometimes used across multiple parts

5

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Geoffrey Litt, Nicholas Schiefer, Johannes Schickling, and Daniel Jackson

of the UI.) Now, in the UI component, we can bind the text input to
the value of the todo text in the database.

export const Header = () => {

const { newTodoText } = useRiffleComponent({

queries: {

newTodoText:

rxSQL(sql`select newTodoText from ui_state;`)
.asScalar()

}

})

return <input

value={newTodoText}

onChange={(e) => store.applyEvent(

'updateNewTodoText',

{ text: e.target.value })}

/>

}

Transactional updates.When the user hits the enter key in the
text box, we want to simultaneously (1) create a new todo with the
text in the box and (2) clear the contents of the text box. Using Riffle,
we can apply events for those two updates within a transaction.
This means that the UI will never be in a state where the text is still
shown in the box but the list of todos is not updated; the state of
the entire app will tick in a single transactional step.

Chaining reactive queries. So far, we have seen static query
definitions. While the results of the query may change at runtime,
the query definitions themselves have been fixed. However, in some
cases, the definition of the query depends dynamically on the results
of another query. In TodoMVC, we will need this functionality to
let the user filter the list to incomplete or completed todos.

First, we store the value of the filter toggle by extending the
existing ui_state table with a filter column. Now we’d like to
use this state to drive queries: eg, if the filter is set to completed,
then we want to append a clause to our query: select * from
todos where completed = true.

Figure 3 shows how this chaining is established in Riffle. We
first write a reactive SQL query which loads the value of the filter
from the database. Then we write a JavaScript computation which
computes a SQL clause applying the appropriate filter in a query.
(It refers to the previous SQL in the chain using a name filter$
which has been assigned.) Finally, we compute a SQL query which
interpolates that clause and loads filtered todos. By writing these
computations, a reactive chain has automatically been established.

A more complex query. So far, we have not gained too much
from the relational model, since we only have a single todos table
storing domain state. However, the benefits of the relational model
grow as our application grows in complexity.

For example, imagine we wanted to add labels to the TodoMVC
app, where a todo can have multiple labels, and the user can filter
by label. In a document data model, we might start by embedding
label names directly inside the documents for todos, but this denor-
malized data model makes it hard to do things like rename a label or
efficiently find all the todos with a given label. A relational model is
a natural fit for this kind of data modeling. We could simply create
a labels table with a todos_labels join table, and then query

across the tables with joins. It would be easy to view the todos
in one or more labels, or to filter together by label and completed
status.

6 CASE STUDY: MUSIC APPLICATION
The benefits of Riffle become more evident in a data-intensive ap-
plication that manages a large amount of data in a complex schema
and has stringent performance requirements. We have used Riffle to
build exactly such an application: a music management application
called Overtone. In this section we first describe the features of
the application, and then share reflections from the development
process.

6.1 Goals
Overtone is a web and desktop application that allows a user to
access their music in two streaming music services, Spotify and
SoundCloud. It also supports subscribing to music podcasts via
RSS. To enable the reactive relational paradigm, the user’s entire
metadata library, as well as the UI state of the application, is stored
locally in a Riffle database after being downloaded from the stream-
ing provider.13 Music playback still happens via streaming network
API calls, because Spotify and Soundcloud don’t allow users to
download music files. Overtone is currently in alpha with limited
usage, but intended eventually for commercial release.

Overtone aims to improve upon the experience of existing stream-
ing music clients in both performance and flexibility.

Performance. Overtone’s performance goal is to respond to
all user interactions within 16ms to render smoothly at 60fps; as
a minimum threshold, we adopt Nielsen’s limit of 100ms [20] for
interactions feeling “instant.” This target is far beyond the perfor-
mance seen in music clients for many popular streaming services.
For example, the Spotify desktop client can take thousands of mil-
liseconds to switch between views for different playlists owned
by a user, even if the playlists are short and have already been re-
cently loaded; we suspect the main culprit is network access. It also
exhibits flickering effects like black screens while data is loading.

Flexibility. It is often useful to see a music collection through
a variety of different views: browsing by playlist, album, or artist;
sorting by various fields; or filtering and doing full text search.
Overtone has a general goal of offering flexible views of music
metadata. Storing the music collection in a relational database that
can be queried with SQL makes it easy to support a variety of
rich views over the data. In contrast, some of these capabilities are
surprisingly absent in music streaming service clients; for example,
Spotify offers no way for users to view all tracks by a given artist.

6.2 Data schema
The relational schema for Overtone currently includes 15 tables.
These tables store domain state like tracks, albums, artists, playlists,
podcasts, as well as relationships between those entities. In the
future, this schema is likely to grow to support more complex
entities such as genres and tags. The schema also includes tables

13Overtone only eagerly synchronizes the data which a user has saved to their collec-
tion; it would be impractical to synchronize all the music in Spotify’s global catalog to
a client device.

6

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA

Figure 3: TodoMVC includes a simple example of a dynamic SQL query. The currently active filter setting is queried from a
table using a SQL query. A JavaScript query then turns that value into a filter clause in a SQL string, which in turn queries the
todos table to produce the final filtered data for the view.

7

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Geoffrey Litt, Nicholas Schiefer, Johannes Schickling, and Daniel Jackson

for storing UI state such as navigation state, the current play queue
and playback state, and the user’s authentication credentials.

We also define 8 incrementally maintained virtual views over
the base tables to efficiently join together data, e.g. joining data
about tracks and artists into a single result table. One example of
such a virtual view is shown in Figure 4. We also define a GraphQL
schema on top of the base relational schema; we describe further
below the problems that motivated the GraphQL layer.

6.3 Application features
In this section, we describe several important features of the Over-
tone application, and how they use Riffle to achieve the goals of
performance and flexibility.

Metadata synchronization.Overtone currently supports adding
tracks from two streaming services (Spotify and SoundCloud) or
a podcast RSS feed. Overtone imports changes in a user’s Spotify
and SoundCloud libraries into their local library by polling over the
network.14 The writes for these imports are scheduled and throttled
so that they do not interfere with smooth operation of the UI while
the import is happening.15 Virtual views are incrementally updated
as imports happen, amortizing the cost of computing whole-table
joins across many incremental updates.

The track list. A central feature in Overtone is the track list,
(shown in Figure 4) which displays a table of music tracks drawn
from a playlist, album, or collection of works by an artist, filtered
and sorted by properties selected by the user. For each track, the UI
shows metadata about the track, and about linked entities. To effi-
ciently load this data, we query a virtual view which joins together
this information.

The track list also supports sorting and full text search. These
features can be supported by chained queries in the reactive graph.
Just as we applied filtering to a list in the TodoMVC example, we
can apply a where clause to the query based on a text search in-
put, or apply an ordering based on the column selected for sorting.
Chained queries also offer a convenient abstraction for implement-
ing virtualized list rendering. Many virtualized list implementations
require complex layers of caching, but in Riffle there is a simple so-
lution: we track the user’s scroll position as UI state, use that scroll
position to determine a window of tracks that should be visible,
and then pass that information to the query that loads the tracks.

The track list uses the local component state mechanism de-
scribed in Appendix A to store the current selection, sort property
and direction, and scroll position. This supports convenient persis-
tent UI state; for example, the sort order and scroll position for each
playlist is saved by default.

The playlist sidebar. The left sidebar in Overtone shows a
list of playlists, with a count of tracks within each playlist. The
data for this component is once again defined by an incrementally
maintained virtual view (shown in Figure 4). The currently selected

14Because Overtone has so far been designed to show a view of music collections
which are already stored in existing cloud services, we have not yet used SKDB’s syn-
chronization features to share the state of relational tables across devices for Overtone.
However, product development in the near future will likely involve synchronizing
the state of relational tables between devices.
15Currently the throttling happens in the application layer; we plan to incorporate
support for throttled background writes into Riffle itself in the future.

playlist is stored in Riffle; we have found that this is a useful piece
of UI state to persist across reloads of the application.

When the user clicks on a playlist in the sidebar, we trigger an
update on the UI state for the currently selected playlist. In turn, this
propagates a change through the reactive graph, which stabilizes
in a transactional way.

Other features. Riffle supports a variety of other features in
Overtone, including a text search box that filters items in the music
collection, using a relational query with a text filter; playback state
(e.g., time and overall duration) for the currently playing track; and
a queue upcoming tracks to play.

Performance. Some Overtone users have libraries containing
many tens of thousands of tracks. This scale of data introduces
performance challenges for the developer building the track list.
We must efficiently find the tracks within a given collection, join in
associated metadata for albums and artists, and apply any relevant
sorting and filtering to the collection. The view might need to
change if the metadata library changes, but also every time the user
performs an interaction, like selecting a new track.

In early experiments, we found that joining together this data at
interactive latencies was challenging. Even a mature relational data-
base like SQLite, with appropriate indexes, would sometimes take
over 300ms to join together the data for the track list with a large
music library. This might be acceptable latency for a traditional
app architecture where state is spread across many layers with
different performance guarantees, but it is too slow for running
directly within a UI.

With SKDB, we achieve more predictable performance. Individ-
ual reads and writes usually complete within 10ms, since expensive
joins are incrementally maintained—and often much faster, on the
order of 1ms. In exchange for some memory overhead and some
small time overhead on writes, reads are made efficient.

Although Riffle generally offers good performance by default,
during the development of Overtone, adding new features has some-
times resulted in performance regressions where interactions ex-
ceed the 100ms threshold. So far, we have been able to solve these
kinds of problems by restructuring reactivity (e.g., moving work
from read queries into eagerly maintained virtual views), or per-
forming standard UI optimization techniques like reducing the size
of result sets using virtualized rendering. We have also found the
need to optimize other parts of the UI stack beyond data transfor-
mations.16

6.4 Reflections
The design of Riffle has co-evolved with this application over the
course of about a year and a half. The lead developer of the ap-
plication started out as an external partner; he ended up making
substantial contributions to Riffle itself, and is now a co-author on
this paper. Most development was done by the solo lead developer,
with some part-time help from the other authors of this paper as
well as several other developers.

16We found that UI responsiveness is often impaired not just by delays in loading
data, but also by delays at the rendering layer. After optimizing the data loading in
Riffle, we found that updating the browser DOM through React.js had become the new
bottleneck, so we re-implemented the table view using a library17 that draws to the
more efficient Canvas API.

8

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA

Figure 4: Examples of a SQL query and view definition used in the Overtone music manager.

The goal of the case study was to test the ideas of Riffle in the
context of a real application with substantial complexity. Many of
the problems we encountered in the creation of Overtone resulted
in changes to Riffle; as a result, this case study should be seen as a
formative process that guided the design of Riffle, not a one-time
evaluation of a pre-existing system. In this section we present some
of the main lessons we have learned from building Overtone using
Riffle. Many of these lessons have already fed back into the design
of Riffle; others suggest unresolved limitations for future work.

Synchronous architecture.In our original prototype of Rif-
fle we used a common architecture for running databases in the
browser: our database ran in a Web Worker thread, communicat-
ing asynchronously with the UI thread. However, when building
Overtone using this prototype we discovered two main problems.

First, performance was inadequate in some cases. In a complex
app like Overtone, Riffle needs to re-run over 10 SQL queries in
response to a single user interaction. In some browsers each query
was incurring up to ~2ms of overhead due to inter-process commu-
nication, often dwarfing the time needed to execute the query itself,
and adding up to substantial delays across multiple queries. We
saw very noticeabe lag in interactions like text entry and button
hover states, which pass through the database in Riffle, and require
low latency to feel fluid.

A second problem was that asynchronous data fetching compli-
cated our mental model of the application. As one example: when
a new component would appear in the UI, it would not have data
available on its first render (because React requires render functions
to be synchronous); we would need to explicitly handle this case,
e.g. with an empty state or loading spinner.

In response to these challenges we switched to the synchronous
architecture described in this paper. Eliminating the overhead of
frequent inter-process communication in the browser solved many
of the user-facing latency issues. It also made our UI code simpler by
eliminating the need for intermediate loading states. (These obser-
vations led to our principle of synchronous transactional updates
described in Section 3.2.)

The synchronous architecture introduces its own new challenges.
Scheduling reactive query updates on the UI thread incurs the risk
of blocking the UI and causing lag; we avoid these problems in
Overtone by making sure that the queries in the application are
fast enough over typical data sizes. Also, we now load all data into
memory, which makes memory a limiting factor in data sizes. We
elaborate more on these problems in Section 8.1.

Incremental view maintenance. Our initial prototype used
SQLite as an underlying persistent database. SQLite is a mature,
optimized database, and we found that its performance met our
needs for most of our queries. However, queries over large playlists

9

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Geoffrey Litt, Nicholas Schiefer, Johannes Schickling, and Daniel Jackson

that required many joins would sometimes take over 10 millisec-
onds, resulting in frame drops and noticeable lag. We attempted
to solve these problems by introducing a materialized view that
would precompute the joins, but this did not resolve the problem
because the materialized view itself needed to be refreshed with an
expensive query when the underlying data changed.

These challenges motivated us to switch to SKDB as a backing
database, since it supports incremental view maintenance which
canmaintain amaterialized viewwithout recomputing from scratch.
We have found that efficient view maintenance is important for
building a database-backed application where queries with many
joins over large data must react with low latency to updates on the
underlying data.18

Limits of SQL. Initially we were enthusiastic about SQL as a
relational query language, but while writing queries to support
Overtone we quickly ran into several limitations. SQL cannot pro-
duce tree-shaped results, has a verbose syntax for traversing asso-
ciations (e.g., a two-step join across a many-to-many association),
and lacks good support for composing fragments of queries into a
larger query. We also found that a lack of automatic type inference
for the resulting types of SQL queries made it difficult to use SQL
queries in a TypeScript environment.

In response to these challenges, we added GraphQL19 as a sup-
ported reactive query type in Riffle. We use a standard GraphQL
setup: we define a schema which defines core data types in the
application, and implement a resolver which interprets GraphQL
queries at runtime by executing SQL queries. Most components
in Overtone do not use raw SQL queries; instead they specify a
GraphQL query for their data requirements.

We have found that GraphQL is a convenient existing language
(and tooling ecosystem) for papering over some of SQL’s limita-
tions. It can produce tree-shaped results, it has a concise syntax for
traversing associations and selecting fields, and it has an existing
tooling ecosystem for inferring TypeScript types from queries. On
the other hand, it adds significant complexity: there are now mul-
tiple data schemas and query languages in the application. In the
future, replacing SQL with a new relational query language better
designed for UI programming might be able to replace these two
layers with a single language.

UI state. Persisting UI state by default turned out to be even
more beneficial than we’d imagined. Users were happy that their
selected playlist and track were preserved, for example. But we also
encountered some bad cases. We initially included the playing state
of a track in the persisted UI state, but this meant that opening the
app could cause a track to start playing spontaneously, which might
be annoying, and even dangerous, if the user hasn’t adjusted their
volume setting. We have handled these kinds of cases by simply
resetting the state to an initial value when the app boots.

In general, we found that we could simply take UI state that
would have been managed in React, and put it into Riffle instead.
However, there are some parts of a UI’s state which are typically
18Another approach we have tried is tomanually incrementalize updates on expensive
views by specifying explicit logic for how the view should update in response to
writes. This approach has several disadvantages: it loses the advantage of declaratively
specifying the view in SQL, and requires careful testing to ensure the update logic is
correct. However, it does provide a pragmatic technique to improve performance even
in a database like SQLite which lacks built-in incremental view maintenance.
19https://graphql.org/

managed by the browser DOM and not React, such as the scroll
position within a component, and these cases required extra work.
In order to store playlist scroll position in Overtone, we needed
to implement additional code to bidirectionally synchronize scroll
position with the database, by listening to scroll events as well as
updating the scroll position in the browser to match the database.

Managing UI state in the database also exposed some of the limi-
tations of the relational model. For example, the Overtone routing
navigation stack is represented as a list of values, with each value
being some branch of a tagged union representing a type of page
and type-specific parameters for that page. This structure proved
clumsy to represent in a relational database (because of the limited
support for tagged unions) so we have currently resorted to storing
the routing stack as a string-serialized value within a single cell in
the relational database.

Debug views.We have found it convenient during Overtone’s
development to have the entire state accessible in a single database.
We have been able to open SQL databases, share them with each
other as files, and have even built features into the app to hydrate
state from a saved previous state. We found that it was often easy
to reproduce bugs because the entire state of the system could be
shared as a file, and the UI depends entirely on the state of the
database. We also built a debugger view showing recent refreshes
(what caused them, and which queries refreshed) which has helped
us fix numerous bugs at both the application level andwithin Riffle’s
implementation; having explicit dependency tracking made it easy
to provide these debug views because the system always knows
the provenance for the causes of any update.

Separate reactivity for data and view. Riffle has its own re-
active graph with dependency tracking at the data layer, and also
integrates with React.js which has its own reactivity model for the
view layer. We found that having a separate reactivity model for the
data layer helped with efficiency because we could propagate data
updates independently of the UI tree. This particularly helps when
two child components far away in a UI tree need to subscribe to the
same data. For example, in Overtone, changing the selection in a list
of tracks updates the contents of a sidebar which shows details for
the selected track. In normal React usage, the state for the selected
track would be “hoisted” to a parent component containing both the
list view and the sidebar, and the entire UI tree below that parent
would need to re-render in response to changes to selection state.
In contrast, in Riffle, the selection can be stored in the database,
and the list view and sidebar can each independently subscribe to
shared state from the database without needing to pass that state
through the UI tree.

Occasionally, we have gotten confused by having multiple layers
of reactivity, since there is caching going on at multiple levels of the
system, including within the Riffle reactive graph and within React.
As future work, subsuming DOM output into Riffle’s reactivity
model might be able to simplify the architecture by removing React
as a separate layer.

Loading data on startup. At first, we designed Overtone to
import all metadata for a user’s music collection upfront, when the
app was started. But this wasn’t ideal: the import process could take
several minutes, during which the user could interact only with
the tracks loaded so far. If you had a particular song in mind, you
wouldn’t be able to navigate to it until the import had reached that

10

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA

Size of table 100 1000 10000 50000
SKDB 1.1 1.6 1.6 2.4
SQLite 1.7 14 130 778

Table 1: Time taken to update materialized view in response
to inserting 1 new track (ms)

song. Because the import latency was constrained by the streaming
service’s rate limiting, and by database insert throughput, there
was no easy way to shorten this process. This problem reflects a
common limitation of local-first software that employs an eager
synchronization workflow.

Our solution was to prioritize imports based on user input. First,
the application shows a list of playlists without loading all their
tracks; if the user clicks on a playlist, the tracks for that playlist
are immediately prioritized for import. The resulting experience
is a kind of hybrid between a traditional web application and stan-
dard local-first application. Once all data has been synchronized,
interactions are synchronous since data is available locally. But
while the data is loading, the user can still navigate to pages that
asynchronously load data, which resembles the experience of a
standard web app.

6.5 Performance analysis
In this section we present a brief performance analysis that shows
how view maintenance scales in Overtone. Overtone stores tracks,
albums, and artists in separate normalized tables. Tracks belong to
a single album and store a foreign key directly; there is also a join
table tracks_artists supporting a many-to-many relationship
between tracks and artists. In the user interface, the information
for all of these tables must be joined together. We compute a mate-
rialized view which stores the results of this join, so that further
downstream queries do not need to compute the joins in response
to user interactions; this view is one of the primary queries in our
application.

Here is a simplified version of the SQL for the view:
select * from tracks, albums,

tracks_artists, artists

where tracks.albumId = albums.id

and tracks_artists.trackId = tracks.id

and tracks_artists.artistId = artists.id;

Whenever the track, artist, or album metadata changes (e.g.,
while importing a metadata change from Spotify), the materialized
view must also be updated. In SQLite, this requires re-running the
entire join query and re-inserting the contents of the view from
scratch. In SKDB, the view can be maintained incrementally, only
updating the changed data.

Table 1 shows the time inmilliseconds taken for each of these two
systems to update the materialized view in response to inserting a
single new track (along with a corresponding album and artist) into
the base tables. Each column represents a different number of pre-
existing tracks in the database before the insert. Both databaseswere
run using WASM running in Google Chrome on a 2021 MacBook
Pro M1, on the same synthetic dataset.

Using SQLite, the time taken to recompute the view scales lin-
early with the number of tracks in the view. While the recomputa-
tion times are reasonable for small collections, with 50,000 tracks
(not an uncommonly large music collection), the recomputation
takes over 700 milliseconds, an unacceptably long time to block the
UI in response to a small change. In contrast, in SKDB, the time
taken stays relatively constant: the view can be updated in under
3 milliseconds even for a large music collection. This benchmark
demonstrates the value of using a database that supports incremen-
tal view maintenance when building responsive applications that
store large amounts of data.

7 HEURISTIC EVALUATION
Olsen [21] introduces a set of criteria for evaluating a complex UI
system. Several of the criteria especially pertain to Riffle.

Importance and generality. Olsen notes that the importance
and generality of the problem being solved is a major factor in
assessing the value of the solution. The problem being solved by
Riffle—managing reactive state in applications—is important and
general, as demonstrated by the large number of research and
commercial systems aiming to solve it. Our solution is general
enough to apply to any application which can be architected in
a local-first way and have its state managed relationally; this is a
broad class of applications which is not limited to any particular
domain. We discuss the limits of the appropriate applications for
Riffle further in Section 8.1.

Scale. It would be much easier to build a version of Riffle that
only works for small toy applications; most of our effort has gone
into making these simple abstractions scale up to a real context. The
music application case study demonstrates that Riffle can scale up
to meet the performance and expressiveness needs of a real-world
application. Many aspects of Riffle’s design, including the perfor-
mance architecture, the addition of GraphQL as a query language,
and the design of our APIs, were specifically informed by the needs
of this large application. We believe the observations from Over-
tone should generalize to any complex application with relational
data and high performance requirements, such as an email client
or budgeting app.

Expressive leverage. Olsen defines expressive leverage as “where
a designer can accomplish more by expressing less.” Riffle achieves
expressive leverage by enabling the developer to declaratively spec-
ify reactive relational queries.

Using typical web technologies, the UI developer for an appli-
cation like Overtone would need to write API calls to query infor-
mation from a backend (e.g., polling for new changes), low-level
JavaScript code for data transformations like relational joins, and
would need to explicitly write code for persisting UI state. In Rif-
fle, the developer only needs to declaratively specify relational
state and queries in order to meet all of these needs. Query results
are automatically updated when the database changes, relational
joins are efficiently executed within the database, and UI state is
automatically persisted by the framework.

Synchronous transactional updates are an example of where
Riffle can help developers achieve a better user experience with
less code. Usually, web UI developers must write code to handle
asynchronous data loading and intermediate states such as loading

11

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Geoffrey Litt, Nicholas Schiefer, Johannes Schickling, and Daniel Jackson

spinners. In a Riffle app like Overtone, this code is eliminated, and
the UI is more responsive to user interactions.

These benefits also relate to Olsen’s notion of expressive match:
“an estimate of how close the means for expressing design choices
are to the problem being solved.” Reactive relational queries offer a
high-level mental model that allows developers to think in terms of
questions like “what data depends on what other data?” and “what
should the shape of these query results be?” rather than concerning
themselves with lower-level implementation details of correctly
propagating updates and efficiently implementing joins.

On the other hand, Riffle does require developers to specify
more explicit information than some competing approaches. The
most prominent example is the need to specify a relational schema,
which requires more up-front work than a schemaless document
data model. We believe this is a worthwhile tradeoff for complex
applications, since the schema makes it easier to enforce data con-
straints and model normalized data.

8 DISCUSSION
8.1 Limitations
In this section we list several key limitations of our general archi-
tecture and our current implementation.

Local-first architecture. Riffle relies on a local-first architec-
ture, which imposes some restrictions on the kinds of applications
that are a good fit for the design.

First, we synchronize more data to the local device than is a typ-
ical web application, meaning the client device must have enough
storage space for the synchronized data. The first-time experience
may also require waiting for more data to load.20 As a result, the
local-first architecture is a better fit for applications with repeated
frequent use (e.g., a music application or a productivity tool), as
opposed to applications which are intended for less frequent use
and may not justify the initial data load time (e.g., an e-commerce
website).

Allowing users to concurrently make edits offline and without a
central server makes it harder to preserve certain data invariants.
Distributed data structures like CRDTs [23, 25, 29] offer techniques
for preserving low-level invariants like the order of elements in
a sequence, but some constraints like uniqueness or foreign key
constraints are difficult to preserve while allowing offline editing.
For example, a room booking system might not be a good fit for
Riffle because users might concurrently book the same room. (These
kinds of stronger data invariants could possibly be added to the
model by requiring certain operations within an application to be
validated by a central server.)

Local-first applications also limit the kinds of access control
that are easily achievable. With a single user, all of the user’s data
may be synchronized, but if data is shared between multiple users,
a more sophisticated approach is needed. If the data can be eas-
ily segmented into large coarse-grained units (e.g., “projects” or
“libraries”), these units may be used to determine what is synchro-
nized to a given user’s device; however, an application like a social
media network may not offer such convenient boundaries between

20As mentioned in Section 6.4 we have somewhat mitigated this load time limitation
by adopting a synchronization strategy which prioritizes events to scrape from cloud
music providers based on user interactions.

discrete datasets. Access control in local-first software is an active
area of research [27].

Schema evolution is a challenge in any local-first system where
state is spread across multiple devices—for example, it is difficult
to rename a column if the rename cannot be performed atomically
across all clients. In Riffle, the problem is more prevalent than usual
because we store UI state in a persistent schema in addition to
domain state. We have not yet developed a principled solution to
this problem; in general we have reset UI state when changing
the schema for that data. Some approaches to managing schema
divergence in decentralized systems have been proposed in the
context of a document-based data model [12] but it is unclear how
this approach would extend to a relational model.

Relational model. Riffle relies heavily on the relational model,
which has several limitations in the context of building user in-
terfaces. Representing sequences and nested hierarchies is less
straightforward in the relational model than using the data struc-
tures like lists and objects available in programming languages,
or in a document-based database. This limitation appears more
acutely in Riffle than in many uses of relational databases because
we encourage moving UI state (which often includes structures like
ordered lists) into the database.

Another limitation is that most relational query languages such
as SQL produce tabular relational results, but user interfaces fre-
quently show tree-shaped results with nesting. This is technically
a limitation of existing relational query languages and not a funda-
mental limitation of the relational model since it is possible to query
relational data and produce nested trees at the final projection step;
Partiql21 is one example of a a relational query language that can
produce nested output. In Riffle we use GraphQL and JavaScript to
transform relational query results into tree-shaped data for the UI.

Synchronous execution model. A major part of Riffle’s sim-
plicity comes from turning interactions that would typically require
asynchronous data fetching into synchronous operations operat-
ing on local data. However, sometimes asynchrony is unavoidable.
One example is making network requests to search a large dataset
that cannot be synchronized locally; another example is handling
particularly slow SQL queries that can’t be made fast enough to
execute synchronously within the UI.

In Riffle, application developers must handle these cases manu-
ally by writing imperative code performs asynchronous operations
which write to the Riffle database. For example, a search over a
cloud music service might trigger asynchronous network requests
and write the results from the network responses back into the
database. This is a practical solution but it loses the simplicity of
Riffle’s declarative model. A possible direction for future work is
suggested by DIEL [28], which offers a declarative relational model
that spans across the network boundary and incorporates asyn-
chronous requests.

Performance limits. As shown in the Overtone case study, the
Riffle architecture is generally capable of supporting responsive
interactions in a real application. However, the currently imple-
mented system does have performance limits.

For the current feature set of Overtone, most interactions in the
application are responsive within the 100ms “instant” threshold

21https://partiql.org/
12

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA

for music collections in the tens of thousands of tracks, but larger
collections can cause some interactions to exceed that threshold.
We believe that continued performance optimization, both within
SKDB and at the interaction point between Riffle and SKDB, is likely
to continue to provide further speedups. Crucially, incremental
maintenance provides extra options for addressing bottlenecks in
a way that is impossible with a traditional non-reactive database,
since the low-level database can be optimized further to efficiently
handle small changes.

So far, we have done our testing on fast modern devices (e.g., a
MacBook Pro with an M1 processor). More testing on slower client
devices may reveal further performance limitations, since the Riffle
architecture depends on the performance of the client. Another
limitation is that we do not currently support datasets that are too
large to fit in memory in the browser’s WASM heap (limited to
1GB), and we have no automated mechanism for asynchronously
executing slow queries off the main thread.

In general, we see the current implementation of Riffle as an
existence proof that a reactive relational database can be made
performant enough to support synchronous transactional updates
and UI state in the database, but improving performance further is
important to make the architecture viable in more situations.

8.2 Future work
Data substrate for interoperability. Prior projects have explored
shared data substrates that enable interoperability between tools. For
example, Webstrates [11] stores information in the browser DOM
and synchronizes it over the Web, SOLID [13] stores information
in personal data pods controlled by the user and accessed via Web
APIs, Plan 9 [22] uses the desktop filesystem to share data among
tools, and Dynamicland22 offers a global reactive database tied to a
physical space. In a similar spirit, we envision using Riffle to build
such a data substrate where multiple applications and tools could
all act on a user’s personal data. For example, a user’s Overtone
music collection stored in a Riffle database could also be accessed by
other special-purpose tools, e.g. a tool that analyzes tracks and adds
additional specialized metadata. As one example of this potential,
we have run some small experiments connecting a generic SQL
editor GUI to a running application, and editing the state (both
domain state and UI state) in the generic editor.

Live programming. The debugger view we have built (Sec-
tion A) is a small example of the kinds of live programming inter-
faces that could visualize the structured dataflow graph created
by Riffle. Future work could explore making this debugger more
powerful. Some directions could include allowing for dynamically
editing running queries within the debugger, and showing richer
views of the dependency structure such as a visual graph.

9 CONCLUSION
We have presented Riffle, a new architecture for user interfaces
that couples the UI with a fast, reactive client-side relational data-
base. Reactive relational queries provide an ergonomic declarative
model for developers to define data transformation logic that can
be efficiently executed. Synchronous transactional updates enable
a responsive and consistent UI. We have demonstrated that this
22https://dynamicland.org/

architecture is capable of supporting the ergonomic development
of a real-world application with a powerful user experience.

ACKNOWLEDGMENTS
Thank you to Skip Labs for collaboration on integrating SKDB, to
RelationalAI for their support of this project, to Matt Wonlaw for
advice on using SQLite, and to David Karger for feedback on this
paper. Geoffrey Litt was supported by an NSF GRFP Fellowship and
the NSF SaTC Program (Award 1801399). Nicholas Schiefer was
supported by a Simons Investigator Award.

REFERENCES
[1] Yanif Ahmad, Oliver Kennedy, Christoph Koch, and Milos Nikolic. 2012.

DBToaster: Higher-order Delta Processing for Dynamic, Frequently Fresh Views.
arXiv:1207.0137 [cs] http://arxiv.org/abs/1207.0137

[2] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein,
and Ion Stoica. 2015. Feral Concurrency Control: An Empirical Investigation of
Modern Application Integrity. In Proceedings of the 2015 ACM SIGMOD Interna-
tional Conference on Management of Data. ACM, Melbourne Victoria Australia,
1327–1342. https://doi.org/10.1145/2723372.2737784

[3] Edward Benson, Amy X. Zhang, and David R. Karger. 2014. Spreadsheet Driven
Web Applications. In Proceedings of the 27th Annual ACM Symposium on User
Interface Software and Technology. ACM, Honolulu Hawaii USA, 97–106. https:
//doi.org/10.1145/2642918.2647387

[4] Kerry Shih-Ping Chang and Brad A. Myers. 2014. Creating Interactive Web
Data Applications with Spreadsheets. In Proceedings of the 27th Annual ACM
Symposium on User Interface Software and Technology - UIST ’14. ACM Press,
Honolulu, Hawaii, USA, 87–96. https://doi.org/10.1145/2642918.2647371

[5] Adam Chlipala. 2015. Ur/Web: A Simple Model for Programming the Web. In
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL ’15). Association for Computing Machinery,
New York, NY, USA, 153–165. https://doi.org/10.1145/2676726.2677004

[6] Ezra Cooper, Sam Lindley, PhilipWadler, and Jeremy Yallop. 2007. Links: Web Pro-
gramming Without Tiers. In Formal Methods for Components and Objects, David
Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern,
John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Stef-
fen, Madhu Sudan, Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi, Gerhard
Weikum, Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem-
Paul de Roever (Eds.). Vol. 4709. Springer Berlin Heidelberg, Berlin, Heidelberg,
266–296. https://doi.org/10.1007/978-3-540-74792-5_12

[7] Jon Gjengset, Malte Schwarzkopf, Jonathan Behrens, Lara Timbó Araújo, Martin
Ek, Eddie Kohler, M. Frans Kaashoek, and Robert Morris. 2018. Noria: Dynamic,
Partially-Stateful Data-Flow for High-Performance Web Applications. In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 18).
213–231. https://www.usenix.org/conference/osdi18/presentation/gjengset

[8] Ashish Gupta, Inderpal SinghMumick, and V. S. Subrahmanian. 1993. Maintaining
Views Incrementally. ACM SIGMOD Record 22, 2 (June 1993), 157–166. https:
//doi.org/10.1145/170036.170066

[9] Alon Y. Halevy. 2001. Answering Queries Using Views: A Survey. The VLDB
Journal 10, 4 (Dec. 2001), 270–294. https://doi.org/10.1007/s007780100054

[10] Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark Mc-
Granaghan. 2019. Local-First Software: You Own Your Data, in Spite of the Cloud.
In Proceedings of the 2019 ACM SIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software - Onward! 2019.
ACM Press, Athens, Greece, 154–178. https://doi.org/10.1145/3359591.3359737

[11] Clemens N. Klokmose, James R. Eagan, Siemen Baader, Wendy Mackay, and
Michel Beaudouin-Lafon. 2015. Webstrates: Shareable Dynamic Media. In Pro-
ceedings of the 28th Annual ACM Symposium on User Interface Software & Tech-
nology - UIST ’15. ACM Press, Daegu, Kyungpook, Republic of Korea, 280–290.
https://doi.org/10.1145/2807442.2807446

[12] Geoffrey Litt, Peter van Hardenberg, and Orion Henry. 2021. Cambria: Schema
Evolution in Distributed Systems with Edit Lenses. In Proceedings of the 8th
Workshop on Principles and Practice of Consistency for Distributed Data (PaPoC
’21). Association for Computing Machinery, New York, NY, USA, 1–9. https:
//doi.org/10.1145/3447865.3457963

[13] Essam Mansour, Andrei Vlad Sambra, Sandro Hawke, Maged Zereba, Sarven
Capadisli, Abdurrahman Ghanem, Ashraf Aboulnaga, and Tim Berners-Lee. 2016.
A Demonstration of the Solid Platform for SocialWeb Applications. In Proceedings
of the 25th International Conference Companion on World Wide Web - WWW ’16
Companion. ACM Press, Montréal, Québec, Canada, 223–226. https:
//doi.org/10.1145/2872518.2890529

[14] Matt McCutchen, Shachar Itzhaky, and Daniel Jackson. 2016. Object Spreadsheets:
A New Computational Model for End-User Development of Data-Centric Web

13

https://arxiv.org/abs/1207.0137
http://arxiv.org/abs/1207.0137
https://doi.org/10.1145/2723372.2737784
https://doi.org/10.1145/2642918.2647387
https://doi.org/10.1145/2642918.2647387
https://doi.org/10.1145/2642918.2647371
https://doi.org/10.1145/2676726.2677004
https://doi.org/10.1007/978-3-540-74792-5_12
https://www.usenix.org/conference/osdi18/presentation/gjengset
https://doi.org/10.1145/170036.170066
https://doi.org/10.1145/170036.170066
https://doi.org/10.1007/s007780100054
https://doi.org/10.1145/3359591.3359737
https://doi.org/10.1145/2807442.2807446
https://doi.org/10.1145/3447865.3457963
https://doi.org/10.1145/3447865.3457963
https://doi.org/10.1145/2872518.2890529
https://doi.org/10.1145/2872518.2890529

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Geoffrey Litt, Nicholas Schiefer, Johannes Schickling, and Daniel Jackson

Applications. In Proceedings of the 2016 ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software - Onward!
2016. ACM Press, Amsterdam, Netherlands, 112–127. https://doi.org/10.1145/
2986012.2986018

[15] Frank McSherry, D. Murray, R. Isaacs, and M. Isard. 2013. Differ-
ential Dataflow. In Conference on Innovative Data Systems Research.
https://www.semanticscholar.org/paper/Differential-Dataflow-McSherry-
Murray/f5df61effe8047eb9ea1702cfcc268dbba678567

[16] Leo A.Meyerovich, Arjun Guha, Jacob Baskin, Gregory H. Cooper, Michael Green-
berg, Aleks Bromfield, and ShriramKrishnamurthi. 2009. Flapjax: A Programming
Language for Ajax Applications. In Proceedings of the 24th ACM SIGPLAN Con-
ference on Object Oriented Programming Systems Languages and Applications
(OOPSLA ’09). Association for Computing Machinery, New York, NY, USA, 1–20.
https://doi.org/10.1145/1640089.1640091

[17] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,
and Martín Abadi. 2013. Naiad: A Timely Dataflow System. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles. ACM, Farminton
Pennsylvania, 439–455. https://doi.org/10.1145/2517349.2522738

[18] Brad A. Myers. 1996. The Amulet User Interface Development Environment.
In Conference Companion on Human Factors in Computing Systems (CHI ’96).
Association for Computing Machinery, New York, NY, USA, 327. https://doi.
org/10.1145/257089.257351

[19] Brad A. Myers, Dario A. Giuse, Roger B. Dannenberg, Brad Vander Zanden,
David S. Kosbie, Edward Pervin, Andrew Mickish, and Philippe Marchal. 1995.
GARNET Comprehensive Support for Graphical, Highly Interactive User Inter-
faces. In Readings in Human–Computer Interaction. Elsevier, 357–371.

[20] Jakob Nielsen. 1993. Response Times: The 3 Important Limits. https://www.
nngroup.com/articles/response-times-3-important-limits/

[21] Dan R. Olsen. 2007. Evaluating User Interface Systems Research. In Proceedings
of the 20th Annual ACM Symposium on User Interface Software and Technology -
UIST ’07. ACM Press, Newport, Rhode Island, USA, 251. https://doi.org/10.1145/
1294211.1294256

[22] Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena, Ken Thompson, Howard
Trickey, and Phil Winterbottom. 1995. Plan 9 from Bell Labs. Computing systems
8, 3 (1995), 221–254.

[23] Hyun-Gul Roh, Myeongjae Jeon, Jin-Soo Kim, and Joonwon Lee. 2011. Replicated
Abstract Data Types: Building Blocks for Collaborative Applications. J. Parallel
and Distrib. Comput. 71, 3 (March 2011), 354–368. https://doi.org/10.1016/j.jpdc.
2010.12.006

[24] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer.
2017. Vega-Lite: A Grammar of Interactive Graphics. IEEE Transactions on
Visualization and Computer Graphics 23, 1 (Jan. 2017), 341–350. https://doi.org/
10.1109/TVCG.2016.2599030

[25] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011. A
Comprehensive Study of Convergent and Commutative Replicated Data Types.
Report. Inria – Centre Paris-Rocquencourt ; INRIA. https://hal.inria.fr/inria-
00555588

[26] Rada Shirkova. 2011. Materialized Views. Foundations and Trends® in Databases
4, 4 (2011), 295–405. https://doi.org/10.1561/1900000020

[27] Matthew Weidner, Martin Kleppmann, Daniel Hugenroth, and Alastair R. Beres-
ford. 2021. Key Agreement for Decentralized Secure Group Messaging with
Strong Security Guarantees. In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security. ACM, Virtual Event Republic of Korea,
2024–2045. https://doi.org/10.1145/3460120.3484542

[28] Yifan Wu, Remco Chang, Joseph Hellerstein, Arvind Satyanarayan, and Eugene
Wu. 2021. DIEL: Interactive Visualization Beyond the Here and Now. https:
//doi.org/10.48550/arXiv.1907.00062 arXiv:1907.00062 [cs]

[29] Weihai Yu and Claudia-Lavinia Ignat. 2020. Conflict-Free Replicated Relations
for Multi-Synchronous Database Management at Edge. In 2020 IEEE International
Conference on Smart Data Services (SMDS). IEEE, Beijing, China, 113–121. https:
//doi.org/10.1109/SMDS49396.2020.00021

APPENDIX
A IMPLEMENTATION DETAILS
In this section we describe details of the implementation of Riffle
as a TypeScript library. Figure 5 shows a high-level overview of the
architecture.

Relational database: As a backend for persistence and query-
ing, Riffle uses SKDB, an open-source relational database23. SKDB

23Note: the source code for SKDB has not been released as of this writing, but it will be
open source by the time this paper is published. A WASM binary is publicly available
here: https://github.com/SkipLabs/skdb. For more information, see: https://skdb.io/

Figure 5: Implementation architecture: The Riffle library sits
between React (for view templating) and SKDB (for all data
storage and queries)

has two particularly useful properties for building the kinds of UIs
that Riffle aims to support.

First, SKDB supports performant incremental updates: when
a small change is made to a table, the results of queries over that
table can be updated much more efficiently than recomputing from
scratch.24 The result of an incrementally maintained query is ma-
terialized into memory, and is known as a virtual view. Virtual
views can have indexes defined on them that are also incrementally
maintained.

Second, SKDB supports data synchronization over the net-
work. Changes made to the database can be synchronized live
between clients through a server using WebSockets. Synchroniza-
tion can be enabled at a per-table level, which is useful for making
some changes local to each device or user.

A full discussion of the details of SKDB’s incrementality and syn-
chronization is out of scope for this paper; we treat these features
as black boxes. These are highly general primitives that we depend
on to enable the Riffle architecture.

Riffle’s contribution is to provide abstractions and architectural
patterns for using this underlying relational database to ergonomi-
cally construct a user interface. The remainder of this section shows
many examples of such patterns, including mechanisms for locally
binding queries and state to UI components, and dynamically gen-
erating queries as a UI evolves.

24Incremental updates enable the Riffle architecture. In a previous iteration of Riffle,
we implemented it using the popular SQLite database as the backend. This worked
conceptually, but was too slow in practice—some expensive joins took hundreds of
milliseconds to recompute, which would block the UI thread and cause noticeable lag.

14

https://doi.org/10.1145/2986012.2986018
https://doi.org/10.1145/2986012.2986018
https://www.semanticscholar.org/paper/Differential-Dataflow-McSherry-Murray/f5df61effe8047eb9ea1702cfcc268dbba678567
https://www.semanticscholar.org/paper/Differential-Dataflow-McSherry-Murray/f5df61effe8047eb9ea1702cfcc268dbba678567
https://doi.org/10.1145/1640089.1640091
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1145/257089.257351
https://doi.org/10.1145/257089.257351
https://www.nngroup.com/articles/response-times-3-important-limits/
https://www.nngroup.com/articles/response-times-3-important-limits/
https://doi.org/10.1145/1294211.1294256
https://doi.org/10.1145/1294211.1294256
https://doi.org/10.1016/j.jpdc.2010.12.006
https://doi.org/10.1016/j.jpdc.2010.12.006
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://hal.inria.fr/inria-00555588
https://hal.inria.fr/inria-00555588
https://doi.org/10.1561/1900000020
https://doi.org/10.1145/3460120.3484542
https://doi.org/10.48550/arXiv.1907.00062
https://doi.org/10.48550/arXiv.1907.00062
https://arxiv.org/abs/1907.00062
https://doi.org/10.1109/SMDS49396.2020.00021
https://doi.org/10.1109/SMDS49396.2020.00021

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA

Figure 6: The Riffle debugger shows the underlying state and
queries for the TodoMVC application.

View framework: Riffle integrates with React.js as a view tem-
plating layer. In principle, the ideas could apply to many view
libraries; we chose React because of its popularity.

In React, developers use hooks to incorporate state, effects, or
library logic into a view component. Riffle defines a hook called
useRiffleComponent that developers can use to specify the data
dependencies of a component. In its simplest form, the developer
can simply pass in a single relational query as an argument, indi-
cating that the component should subscribe to that query. In more
complex forms, the developer can subscribe to multiple queries
at once, establish dependencies between them, and/or specify a
schema for local component state. We will see examples of all these
forms in the case studies below.

Reactivity algorithm: In an ideal world, the reactive graph
could be fully dynamic: any query could be initialized at any time
and maintained reactively from then on. In practice, however, many
queries are too expensive to initialize dynamically in response to a
user interaction, for the same reason that a non-reactive database is
too slow to power Riffle in general. For this reason, Riffle supports
two layers of reactivity: a static layer and an on-demand layer.

The static layer is implemented using SKDB’s virtual views,
which are defined statically in the code, globally scoped over all the
data, and initialized when the application first boots. They are then
incrementally maintained eagerly by SKDB. These virtual views
typically compute expensive joins over the application’s state.

The on-demand layer represents a smaller set of currently active
queries being used by the UI, and is maintained within Riffle itself.
The on-demand layer invalidates and reruns queries with table-
level reactivity: the programmer annotates which queries depend
on which tables (or virtual views) in the database, and also which
writes affect which tables, and then the reactive graph automatically
reruns queries when data changes.25 Updates propagate through
the graph in a topologically sorted order; we compare new values to

25Table annotations are optional; if omitted from a query, then the query will rerun
upon every write to any table. Also, we envision removing manual annotations in a
future version of Riffle, by taking deeper advantage of SKDB’s built-in reactivity.

old values at every node and perform early cutoff if a query returns
the same results as it previously returned.

Query languages: Virtual views in SKDB are defined in SQL.
For dynamic queries, Riffle lets the developer choose between one
of three languages:

• SQL offers a powerful declarative model for joining, filtering,
and aggregating over relational data. Many web developers
already have some familiarity with SQL.

• GraphQL26 provides an additional layer on top of SQL with
several advantages. It has a concise syntax for specifying
simple traversals of object graphs, and has the ability to
directly produce nested tree-shaped result sets which are
often needed to construct a UI tree.

• JavaScript can also be used to write any computation as a
query, as long as it is pure and side-effect free. This may be
more verbose than SQL or GraphQL, but is also more flexible
for expressing arbitrary logic.27

Dynamic query generation: Many user interfaces require
queries where the logic of the query itself depends on the results of
other queries. A common case is that a query contains a parameter
which must be bound to a value. Sometimes, the level of dynamism
needed exceeds the simple parameter binding available within a
SQL query—for example, we might want to entirely omit part of
the query if some runtime condition holds. Riffle supports highly
dynamic queries by allowing the developer to specify SQL query
fragments as strings using JavaScript; we show some examples of
this in Section 5.

Query scope: Queries can exist in two scopes: they can either
be global, or local to a component. Global queries are initialized
outside of the UI tree, and are typically maintained as long as the
application is running. A local query has a lifetime and scope tied
to a specific component in the UI tree: it is initialized together with
the component, maintained while the component exists in the tree,
and torn down when the component is removed.

Local queries accomplish two goals. First, they are necessary
for efficiency, since they provide a way to subscribe only to data
that is currently being used in the UI. They also provide a conve-
nient scoping abstraction, since they are able to incorporate local
component state into the query, as we describe next.

Local component state: UIs are commonly constructed out of
a tree of components that each maintain local state. Riffle provides
an abstraction for easily managing such state within component
code, while storing it in a persistent relational database.

For a given component type, the developer defines a state schema,
a set of columns representing the state associatedwith each instance
of that component. For example, for a TrackList component in
a music app, the developer might specify scrollPosition and
selectedTrackId in the state schema.

Given this schema, Riffle automatically creates a database table
with the given columns, which will store one row per instance of
this component type. Inside a component instance, the developer

26https://graphql.org/
27There are currently some restrictions on the ordering of the languages in the graph,
because SQL and GraphQL queries can only run directly on database tables. The results
of a SQL query can flow into a JavaScript query that applies further transformations,
but the results of a JavaScript query cannot be queried using SQL. This is an incidental
limitation of our implementation, and not a principled choice.

15

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Geoffrey Litt, Nicholas Schiefer, Johannes Schickling, and Daniel Jackson

may read and write the local state values; Riffle maps these to
queries and writes over the appropriate row in the component state
table.

Each component instance is associated with a component key
which uniquely identifies that instance. By default, Riffle automati-
cally generates a unique key for each component instance that is
created in the UI, meaning that the state of the instance will never
be loaded from persistent storage. If the developer would prefer
that the local state of the component is saved, they can define a
stable key; for example, the natural key for a TrackList component
would be the ID of the playlist being shown by that list.28

Performance architecture: We make two implementation
choices that are crucial for performance.

First, we run SKDB synchronously in the main UI thread, in
order to avoid messaging overheads associated with sending large
data blobs to a separate process such as a Web Worker. This brings
the risk that slow queries will block the browser from updating the
UI, so ensuring fast queries through incremental maintenance is
essential.

Second, we batch state updates to React. Whenever there is a
state change, we update all queries in the reactive graph before
sending them all to React in a single batch. This choice has semantic

importance, since it means we will never render a UI that only
contains some of the downstream updates implied by a state update.
It also brings a performance benefit, since React does not need to
repeatedly update in response to the same state change.

Debugger: We have implemented a simple debugger (shown
in Figure 6) which exposes the underlying structure of a Riffle
application, showing:

• A live view of the tables in the underlying database, including
their data and schemas

• A live view of the queries currently executing over the data-
base, and their results

• An interactive console where the user can execute arbitrary
queries over the current state of the database

The debugger brings some degree of live programming facili-
ties to Riffle, because the developer can understand the data and
queries backing the application, and try out new queries. Although
it currently cannot actually edit the underlying application code
stored on the filesystem, the developer can still prototype a query
in the debugger and then copy-paste it into their code editor.
28So far, we have not found it necessary to implement a system to garbage collect stale
local component state, but such a system could be straightforwardly implemented
by saving a creation timestamp with each component state record, and periodically
removing old records as space limitations are hit.

16

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Riffle Concepts
	3.1 Reactive relational queries
	3.2 Synchronous transactional updates

	4 System Implementation
	5 Riffle by example: Todo List
	6 Case study: Music Application
	6.1 Goals
	6.2 Data schema
	6.3 Application features
	6.4 Reflections
	6.5 Performance analysis

	7 Heuristic evaluation
	8 Discussion
	8.1 Limitations
	8.2 Future work

	9 Conclusion
	Acknowledgments
	References
	A Implementation Details

