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ABSTRACT
Motivation: In the study of many systems, cells are first syn-
chronized so that a large population of cells exhibit similar
behavior. While synchronization can usually be achieved for a
short duration, after a while cells begin to lose their synchron-
ization. Synchronization loss is a continuous process and so
the observed value in a population of cells for a gene at time t
is actually a convolution of its values in an interval around t .
Deconvolving the observed values from a mixed population
will allow us to obtain better models for these systems and to
accurately detect the genes that participate in these systems.
Results: We present an algorithm which combines budding
index and gene expression data to deconvolve expression
profiles. Using the budding index data we first fit a synchroniza-
tion loss model for the cell cycle system. Our deconvolution
algorithm uses this loss model and can also use information
from co-expressed genes, making it more robust against noise
and missing values. Using expression and budding data for
yeast we show that our algorithm is able to reconstruct a more
accurate representation when compared with the observed
values. In addition, using the deconvolved profiles we are able
to correctly identify 15% more cycling genes when compared
to a set identified using the observed values.
Availability: Matlab implementation can be downloaded from
the supporting website http://www.cs.cmu.edu/~zivbj/decon/
decon.html
Contact: zivbj@cs.cmu.edu

INTRODUCTION
Cyclic systems, such as the the cell cycle (Spellman et al.,
1998) and circadian clock (Panda et al., 2002) play a key
role in many biological processes, including development and
cancer. Due to our inability to profile single cells, expression
experiments that study these systems are usually carried out
by synchronizing a population of cells. Synchronization is
achieved by first arresting cells at a specific point and then
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releasing cells from the arrest so that at the beginning of the
experiment all cells are at the same point.

Even with the best synchronization method cells do not
remain synchronized forever. For yeast, cells seem to remain
relatively synchronized for two cycles (Spellman et al., 1998;
Shedden et al., 2002B) while wild type human cells lose their
synchronization very early (Shedden et al., 2002A) or halfway
through the first cycle (Whitfiled et al., 2002) depending on
the arrest method. Synchronization loss is a continuous pro-
cess. Even for yeast, cells are much less synchronized during
the second cycle when compared with the first cycle. This
causes the peak expression value to be lower in the second
cycle and the lowest expression value to be higher for most
cycling genes (Fig. 1). Thus, the expression value measured
for a gene g at time t is actually a convolution of the true
expression values of g at an interval around t . Deconvolving
the measured expression values to more accurately repres-
ent single-cell behavior will allow us to improve the results
of algorithms that generate models for the cell cycle system.
In addition, the deconvolved profiles improve our ability to
identify cycling genes in yeast, and may lead to the discovery
of a similar set of cycling genes in humans.

While we can indirectly detect loss of synchronization
using expression data, there are two other methods that are
more suitable for this task: fluorescence-activated cell sorting
(FACS) analysis and budding index. FACS is a method for
determining the DNA content of individual cells. Cells are
inserted into a narrow tube, and at the end of the tube the
DNA content of each cell is measured using a laser reader.
Budding index is the process in which cells are counted under
the microscope to determine the presence and size (small or
large) of buds for each cell. While these methods have been
used to validate synchronization experiments, both can only
assign cells into one of three cell cycle phases: G1, S and
G2/M1. While this data is useful for determining the rate

1FACS can actually determine a distribution for cells in the S phase as well,
however, this data is relatively noisy and many researchers use only the total
amount of cells in S. See, e.g. Whitfiled et al. (2002)
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Fig. 1. Agreement between first and second cycle for Smc3, one of the 800 cycling yeast genes. Using the observed values, there is a difference
between the peak and lowest expression value when comparing the first and second cycle. These differences are drastically reduced when
deconvolving the measured expression data using the algorithm discussed in this paper. See also the Results section.

of synchronization loss, it cannot be directly used to recon-
struct expression profiles. The main problem is that this data
is too coarse, partitioning cells into only three phases while
expression profiles are continuous in nature.

In this paper, we present a method for deconvolving popu-
lation effects by combining budding index or FACS data with
gene expression data. We assume that following release from
arrest, each cell proceeds according to its own internal clock.
Clock speeds for all cells are assumed to be normally distrib-
uted with mean 1 (the real time) and an unknown variance.
The biological basis for this model is the observation that cells
are growing at (slightly) different rates which in turn affects
their entrance into S phase and progression through the rest
of the cell cycle. In order to test the validity of our model we
generated new budding index data for yeast. As we show in
Results section, our model fits the observed data very well,
even though it contains far fewer parameters than data points.

In order to deconvolve the measured expression data we
need to assign a continuous representation to each gene.
Due to noise and missing values, interpolating individual
genes does not work very well. Instead, a method that uses
co-expressed genes to constrain spline assignment to indi-
vidual genes was presented in Bar-Joseph et al. (2002). Here
we modify this method to deconvolve expression values as
well. The resulting profiles are the single-cell expression val-
ues for each gene, and these profiles allow us to correctly
identify cycling genes that cannot be identified when relying
on the measured values, or an interpolated version of these
values.

Related work
Fluorescence-activated cell sorting and budding index were
used in the past to validate synchronization in gene expression

experiments. For example, Spellman et al. (1998) used both
methods to validate that yeast cells can be synchronized using
a variety of arrest methods. Whitfiled et al. (2002) used FACS
data to show that unlike wild type cells, human cancer cells
remain relatively well synchronized for two cycles. However,
in all previous work on gene expression data, these methods
were not used to determine a synchronization loss model, as
we do in this paper. We are not aware of papers that used these
data sources to deconvolve expression data.

Determining the rate of synchronization loss was addressed
previously in the biological literature, though not in the
context of expression data. Creanor and Mitchison (1994)
presented a heuristic method which relies on cell division time
to determine this rate. Unlike their method, our algorithm can
also use the rate in which cells progress from G1 to S and from
S to G2/M, leading to a more accurate model. Further, unlike
our algorithm, their method is not model based and requires
manual adjustments.

Shedden and Cooper (2002B) used a Fourier analysis
algorithm to test the synchronizations of different arrest meth-
ods. Wichert et al. (2004) presented methods for identifying
periodically expressed genes using statistical methods. While
these methods can be used to detect synchronization loss, they
cannot be directly used to deconvolve expression profiles as
we do in this paper.

Lu et al. (2003) presented a method for deconvolving static
expression data in yeast. Their goal is to model the expres-
sion values of genes in steady state as a linear combination of
different cell cycle phases. Unlike our method, their method
assumes a set of perfectly synchronized expression values,
and cannot be directly used to deconvolve time series expres-
sion data. In addition, their method relies solely on the
expression data, and thus cannot be used in organisms in
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which cells cannot be synchronized beyond one cycle (such as
humans).

Zhao et al. (2001) assigned pre-determined curves (sinus-
oids) to yeast expression profiles. By relying on the accuracy
of the first cycle they were able to reconstruct a better rep-
resentation for the total expression profile of each gene and
detect a better set of cycling genes. While their method is
useful, unlike our method it cannot be extended to other organ-
isms since it relies on the presence of a synchronized first
cycle. In addition, since it only relies on expression data, this
method needs to make a very strong assumption about the
shape of the curve. In contrast, by using additional information
(FACS and budding index) our algorithm works for any type
of curve.

While this paper was under review, Lu et al. (2004)
presented a different method for resynchronizing time series
expression data. As we do in this paper they assume that cell
cycle rates for yeast cell population follow a normal distri-
bution. Their method fits a convolved sinusoid to time series
expression data. Unlike our method, their method relies solely
on the measured expression data, requiring the existence of
a strong cyclic signal for all cell cycle genes. Unfortunately,
such strong cyclic signal does not exist for many other organ-
isms, including human fibroblast cells. As mentioned above,
such cells are not synchronized for even one cycle. In con-
trast, by relying on external measurements (such as FACS
data) our algorithm can generate a synchronization loss model
for any cell type, and use this model to deconvolve cell cycle
expression.

METHODS
Budding index data
Spellman et al. (1998) performed budding index analysis in
conjunction with their expression profiling but this data was
reportedly lost (Spellman and Sherlock, personal commu-
nication). We have thus performed additional budding index
analysis. Yeast cells (W303 strain Z1321) were grown to
OD600 of 0.2 in YPD. The cells were synchronized by adding
alpha factor (5 µg/ml) to the growth medium. After 2 h incuba-
tion the culture were completely arrested in G1 (all the cell
were without buds). The synchronization was released by
washing out the alpha factor from the medium (by pellet-
ing the cells and changing to a fresh medium) and the cells
were grown for additional 90 min. Samples were taken every
15 min, fixed (1% formaldehyde) and observed under a light
microscope. For each time point 200 cells were counted and
the fraction of cells with no bud, a small bud (smaller than
one half of the yeast cell) or a large bud was documented. In
Figure 2 we present the results of one of these experiments.
In that figure we annotated the no bud fraction as G1, small
bud as S and large bud as G2/M. See supporting website
(http://www.cs.cmu.edu/~zivbj/decon/decon.html) for com-
plete results.

Modeling synchronization loss
Let t denote universal or external time. We will assume
that each cell has its own ‘internal clock’ which controls its
progression through the cell cycle. Each cell has an intrinsic
speed v, and therefore its own ‘internal time’, vt .

We will further assume that the speeds of the internal clocks
in the cell population follow a Gaussian (Normal) distribu-
tion2. Based on the observed budding index data, it is clear
that this speed is restricted to a limited range (Fig. 2). The
following describes our assumption and observed restrictions
for v:

v ∼ N(µ, σ) 0.5 ≤ v ≤ 1.5.

We define the average speed to be µ = 1 (so that clocks are
distributed around the real observed time). We are thus left
with a single parameter, σ , for characterizing cell cycle rate
variation.

At time t = 0, all cells transition from the arrested state
into G1. Subsequently, cells with higher internal speed are the
first to transition into the next phase. Let dG, dS, dM denote
the duration of the G1, S and G2/M phases, respectively, in
cells with v = 1. For notational convenience, let dCYC =
dG + dS + dM.

Let mG(t) denote the fraction of cells that are in G1 at time
t , and similarly define mS and mM for cells in S and G2/M.
Under our model, the cells found in the G1 phase at time t

are those whose speed v obeys 0 ≤ vt < dG (first cycle)
or dCYC ≤ vt < dCYC + dG (second cycle). This is true
as long as no cell was able to start the third cycle, i.e. t ≤
2 · (dCYC)/vmax, which is the case for the data analyzed in this
paper. Therefore, the fraction mG(t) of cells in phase G1 is:

mG(t) ∝
∫ tv=dG

0
e(v−1)2/2σ 2

dv+
∫ tv=dCYC+dG

tv=dCYC

e(v−1)2/2σ 2
dv.

And similarly for mS(t) and mM(t). Note that we have
ignored the normalization constants because they can be
recomputed by requiring mG + mS + mM = 1.0 for all t .

LetVG(t), VS(t), VM(t)be the empirical measurements (e.g.
FACS or budding index) of phase proportions at time t , and
let (t1, t2, . . . , tk) be the times at which they were taken. We
can now fit the parameters of our model (σ , dG, dS, dM) by
minimizing the sum squared difference between the predicted
and observed values, namely

ERR(σ , dG, dS, dM) =
k∑

i=1

[(mG(ti) − VG(ti))
2

+ (mS(ti) − VS(ti))
2

+ (mM(ti) − VM(ti))
2].

2An alternative assumption would have been a Poisson distribution of phase
lengths. Biologically our model is more reasonable, at least for G1, because it
says that cells exit G1 after going through a stochastic growth process, rather
than by some random spontaneous event.
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Fig. 2. Comparison between observed budding index values (solid line) and reconstructed values (dashed lines). (a) Comparing measured
and fitted values based on one experiment. (b) Comparing fitted values determined using the three repeats to measured values of the same
experiment shown in (a). In both cases the agreement is quite good, despite the fact that budding data is noisy and the fitted model has many
fewer parameters than the number of observed points. This indicates that the synchronization loss model we assume can be used to explain
synchronization loss in cell cycle experiments.

Since the error function to be minimized is not obviously con-
vex, more than one local minimum may exist. Nonetheless, we
can efficiently find a good local minimum using a successive
line minimization algorithm such as Powell’s Method (Press
et al., 1992, p. 412), which starts from an arbitrary point in
parameter space and cycles through the parameters, finding
a minimum along one dimension at a time. This algorithm is
guaranteed to converge (albeit to a local minimum), and in
practice often converges rapidly. As we show in the Results
section, for budding index data the resulting parameters fit the
measured data very well.

The method described above can be modified to fit a more
general model of synchronization loss, in which a different
Gaussian (a distinct σ ) is used for each phase. This will
increase the number of variables to six (two additional vari-
ance terms are required). Interestingly, even though this model
is more complex, for the budding index and expression data
analyzed in this paper the model discussed above (using the
same σ for all phases) seems to give the best results.

Deconvolving time series expression data
We present a method for deconvolving gene expression data
using the synchronization loss model discussed above. Note
that such a deconvolution cannot be performed without inter-
polating the observed values. Even if we knew the phase
distribution of cells at time t , because of the relatively low
sampling rates, we cannot obtain the values for the inter-
val around t without a continuous representation for the
measured data.

Several methods have been suggested to interpolate time
series gene expression data. In prior work (Bar-Joseph et al.,
2002, 2003) we have shown that cubic spline interpolation,
where spline assignment to individual gene is constrained by
co-expressed genes, outperforms other interpolation methods
for such data. Here we present an extension to this method
allowing it to deconvolve expression data for individual genes
while still relying on co-expressed genes to counter noise and
missing value.

Deconvolving expression data using splines The observed
value for gene i at time t is actually a convolution of is expres-
sion values at an interval around t . Let ui(t) represent the
underlying expression value for i at time t , and set

g(x, t) = 1√
2πσ

e(x/t−1)2/2σ 2
,

where σ 2 is the variance determined for the synchronization
loss. g(x, t) represents the fraction of cells that are at time x

when the real time is t . Let Yi(t) be the observed value for i

at time t . Then we can write:

Yi(t) =
∫ ∞

0
ui(x)g(x, t)dx + ε. (1)

That is, Yi(t) is a convolution of is expression values (ui)
where the weighting is based on the percentage of cells that
are at time x when the real (experiment) time is t . ε is a noise
term which is assumed to be normally distributed with mean 0.

We use cubic splines to represent ui . Cubic splines are a
set of piecewise cubic polynomials, and are frequently used
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for fitting time-series and other noisy data. Specifically, we
use B-splines, which can be described as a linear combina-
tion of a set of basis polynomials. By knowing the value of
these splines at a set of control points, one can generate the
entire set of polynomials from these basis functions. Due to
noise and missing values, fitting splines to individual genes
leads to overfitting of the expression data. Instead, we use
mixed effects models, which combine gene specific and class
information to constrain spline assignment using co-expressed
genes. Using such a model, ui can be written as

ui(t) = s(t)(µk + γi). (2)

Here, µk is the mean spline control point for class Ck (the
class to which i belongs) and γi is the gene-specific spline
control point. The parameters of this model are determined
using an EM algorithm. In the E step, we determine class
membership for each gene and the other parameters of the
model are maximized w.r.t. the class assignment in the M
step. See Bar-Joseph et al. (2002) for complete details.

We now use our continuous spline representation for ui

to deconvolve the measured expression values. Substituting
Equations (2) into (1) we get

Yi(t) =
∫ ∞

0
s(x)(µk + γi)g(x, t)dx + ε, (3)

=
∑

j

(µk,j + γi,j )

∫ ∞

0
sj (x)g(x, t)dx + ε, (4)

where µk,j and γi,j are the j -th entry in the class mean and
gene-specific control points, respectively, and sj (x) is the j -th
entry of the spline coefficients evaluated at time x. Set

bj (t) =
∫ ∞

0
sj (x)g(x, t)dx.

We can then write

Yi(t) = b(t)(µk + γi) + ε, (5)

where the j -th entry in b(t) is bj (t).
Equation (5) replaces the spline coefficients s(t) from

Equation (2) with a weighted spline coefficients b(t), where
the weighting is determined using our synchronization loss
model. However, apart for this difference (and the noise we
assume for measurement error), the two equations are the
same. Note that since σ 2 has been fixed, b(t) does not contain
any parameters, and can be computed using numerical integ-
ration. Thus, we can use the same EM algorithm mentioned
above to fit the parameters of the mixed-effects models, and
deconvolve the measured expression data by replacing every
occurrence of s(t) with the corresponding b(t). Due to lack
of space we do not repeat the details of this algorithm. The
reader is referred to (Bar-Joseph et al., 2002) for more details.

RESULTS
We have tested our algorithm using budding index and gene
expression data from yeast cells. The main reason we have
used yeast is because unlike other organisms, yeast is relat-
ively synchronized for two cycles. This, and the fact that a lot
is known about cycling genes in yeast allows us to validate
the results of our algorithm, as we discuss below. In addi-
tion, the fact that so many researchers have used yeast cell
cycle expression data to model networks in the cell makes the
reconstruction of the true underlying single-cell profiles an
important goal.

Modeling synchronization loss
We have repeated the budding index analysis three times, and
have used the algorithm discussed in the Methods section
to determine the rate of synchronization loss. Overall, our
model fitted the data very well. Figure 2 shows the observed
and reconstructed values when fitting our model to one of the
experiments and to all three. Note that, although our algorithm
uses only four parameters to fit 21 (for one experiment) or
63 (for three) observed points, the fit is very good, indicating
that our model can be used to explain synchronization loss in
yeast cells.

Using the complete set of experiments we have determ-
ined that the mean duration of the cell cycle (dcyc), is 84 min
(this value ranged from 80 to 88 min for the individual
experiments, indicating a good agreement between repeated
measurements). The G1 phase was determined to be 41 min,
S phase 17 min and G2/M 26 min.

The SD of the internal clocks (σ ) ranged between 0.07
and 0.11 for the individual experiments. Combining the three
repeats resulted in σ = 0.09 which is the value we used for
deconvolving expression data.

Deconvolving yeast cell cycle expression data
We have used alpha synchronized expression data (Spellman
et al., 1998) to test our algorithm. This data contained 18 time
points sampled uniformly every 7 min between 0 and 119. The
duration of the cell cycle was shorter (65 min) for the expres-
sion data, perhaps because of differences in the time of arrest
between the budding and expression experiments (Spellman,
personal communication). Since cells progress quicker in the
expression experiment we have slightly scaled our estimation
of σ accordingly, and set σ 2/0.092 = 84/65 ⇒ σ = 0.1.

Below we present a comparison of the results of our
deconvolution algorithm (DECON) with the observed values
(VALUES) and with an interpolated version of these values
based on mixed effects models (MEFFECTS).

Comparing first and second cycles In order to test the
resulting deconvolution, we have looked at the ability of
our algorithm to improve the agreement between the first
and second cycle. For this, we have used the 800 cycling
yeast genes determined by Spellman et al. (1998). Note
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Table 1. Global comparison between peak and low expression
differences for the three datasets

Diff. peak Diff. low

VALUES 0.14 0.25
MEFFECTS 0.09 0.20
DECON 0.09 0.11

Note that for DECON, both differences are small and are within the measured noise
range (0.11). This indicates that the synchronization loss model we inferred from the
budding index data agrees well with the measured expression data.

that our deconvolution method does not rely on the rela-
tionship between the first and second cycle, and so even
though our algorithm uses a more complex model this test
is valid. First, we have compared the difference between
the peak and bottom points of the first cycle and the corres-
ponding points in the second cycle for these genes. Table 1
presents the average square difference between these points
for VALUES, MEFFECTS and DECON. For both peak and
bottom, DECON and MEFFECTS did better than VALUES,
because of their ability to overcome noise and missing values.
For peak points, both DECON and MEFFECTS performed
well, and the differences were within the range of the meas-
ured noise variance (0.11). However, for the bottom point,
DECON did much better than MEFFECTS. While the dif-
ference using DECON was within the range of the measured
variance, the MEFFECTS result was almost twice that much.
The reason for the difference between peak and bottom val-
ues for MEFFECTS might be because a large proportion
of the cycling genes are in G1. G1 genes peak early, and
reach their bottom values toward the end of the cycle. Thus,
these genes are more synchronized in their second peak com-
pared to their second bottom. We have also performed a more
global test, by aligning the two cycles using MEFFECTS
and DECON and computing the resulting alignment error for
all genes. These results too confirmed that the reconstruc-
ted curve achieves better agreement between the two cycles
[results are omitted due to lack of space, see supporting web-
site (http://www.cs.cmu.edu/~zivbj/decon/decon.html) for
details]. In Figure 3, we present plots of the average expres-
sion profiles for genes in two of the cell cycle phases. Note
that in both cases, the reconstructed curves result in a better
agreement between the first and second cycle.

Identifying cell cycle genes We have tested whether our
deconvolution results can help in identifying cell cycle genes
that cannot be identified using the observed values alone. To
this end we have a used the Fourier Proportion of VariancE
(PVE) method developed by Shedden and Cooper (2002B)
which compares the ability of periodic and a-periodic curves
to explain the expression profile. Note that for identifying
cycling genes we cannot rely on the 800 cell cycle genes

from Spellman et al. (1998) since this set was determined
using the alpha values. Instead, we first complied a list
of the top 800 cycling genes using two other cell cycle
expression datasets: Cdc15 (24 time points) and Cdc28
(17). The complete list is available from the supporting
website (http://www.cs.cmu.edu/~zivbj/decon/decon.html).
We denote this list by CYC.

In order to determine a cutoff for cycling genes, we ran-
domized the expression values for each gene, and applied
the interpolation and deconvolution algorithms to this data
as well. For each set of profiles (VALUES, MEFFECTS and
DECON) we determined the PVE threshold that detected only
1% (60) of the genes in the random set, and used it to select
all genes (from the 6000 yeast genes) that were above this
threshold when using the original data. The MEFFECTS res-
ult did not distinguish well between the randomized and real
data, detecting only 141 genes above the noise level. The
main reason MEFFECTS did not perform well for this task
is because of the tendency of spline approximation (without
deconvolution) to smooth the observed measurements. While
this helps in overcoming noise, it also flattens the profiles for
both random and real data. On the other hand, both VAL-
UES and DECON were able to detect a large number of
genes above the noise level (510 and 529, respectively). We
intersected these lists with CYC and found that the list gener-
ated from DECON was in much better agreement. VALUES
contained 167 genes from CYC (p-value = 10−33) while
DECON had 195 such genes (p-value = 0). Thus our decon-
volved profiles were able to correctly identify 15% more
genes when compared with the observed values alone, indic-
ating the importance of applying this method to measured cell
cycle data.

We also looked at a list 113 genes that were previ-
ously detected by Cho et al. (1998) as cycling using the
cdc28 data only, but were omitted from the 800 cycling
genes list by Spellman et al. (1998) because they did not
seem to cycle in alpha and cdc15 [see supporting web-
site (http://www.cs.cmu.edu/~zivbj/decon/decon.html) for
the list]. Using the deconvolved values we found that eight
of these genes were determined to be cycling in alpha, even
though they cannot be detected using the measured values
alone. Figure 4 presents three examples of such genes.

DISCUSSION AND FUTURE WORK
Many systems can only be studied by arresting large pop-
ulation of cells. While arresting cells works well initially,
cells lose their synchronization as a result of growth rate and
other differences. Thus, the observed values in such studies
are actually a convolved version of the underlying single-
cell expression values. By deconvolving the observed values
we can reconstruct this underlying profile, resulting in an
improved ability to detect system-related genes and to model
such systems.
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Fig. 3. Comparison between first and second cycle for yeast genes. (a) and (b) Observed, spline interpolated and deconvolved expression
values for genes in G1 and S phases. Note that in both cases the second peak is correctly higher in the deconvolved profiles, resulting in a
better agreement between the first and second cycle.
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identified when using the deconvolved profiles, but were not identified by Spellman et al. using the measured alpha values. Note that our
deconvolution results overcome noise in the data and achieve better agreement between the first and second cycle.

In this work, we presented a synchronization loss model for
the cell cycle system. This model was used to deconvolve cell
cycle expression data. We have carried out biological exper-
iments to validate our synchronization loss model. Decon-
volving yeast expression data using this model resulted in
better agreement between first and second cycle and improved
our ability to detect cycling genes.

Cell cycle is tightly linked to development and cancer.
An important open problem is to determine the list of cyc-
ling human genes. Unfortunately, wild type human cells
cannot be synchronized for one complete cycle. In future

work we intend to use the method presented in this paper
to deconvolve human cell cycle expression data, in order to
determine the list of cycling human genes. We believe that
this list, and the deconvolved expression profiles will aid
future work in modeling the cell cycle system in yeast and
humans.
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