
Maximum likelihood estimation of optimal scaling factors for

expression array normalization

Alexander J. Harteminka, David K. Gifforda,b, Tommi S. Jaakkolab, and Richard A. Youngc

aMIT Laboratory for Computer Science

200 Technology Square, Cambridge, MA 02139

bMIT Artificial Intelligence Laboratory

200 Technology Square, Cambridge, MA 02139

cWhitehead Institute for Biomedical Research

Nine Cambridge Center, Cambridge, MA 02142

ABSTRACT

Data from expression arrays must be comparable before it can be analyzed rigorously on a large scale. Accurate
normalization improves the comparability of expression data because it seeks to account for sources of variation
obscuring the underlying variation of interest. Undesirable variation in reported expression levels originates in the
preparation and hybridization of the sample as well as in the manufacture of the array itself, and may differ depending
on the array technology being employed. Published research to date has not characterized the degree of variation
associated with these sources, and results are often reported without tight statistical bounds on their significance.
We analyze the distributions of reported levels of exogenous control species spiked into samples applied to 1280
Affymetrix arrays. We develop a model for explaining reported expression levels under an assumption of primarily
multiplicative variation. To compute the scaling factors needed for normalization, we derive maximum likelihood
and maximum a posteriori estimates for the parameters characterizing the multiplicative variation in reported spiked
control expression levels. We conclude that the optimal scaling factors in this context are weighted geometric means
and determine the appropriate weights. The optimal scaling factor estimates so computed can be used for subsequent
array normalization.

Keywords: normalization, scaling, microarray, oligonucleotide array, DNA chip, maximum likelihood, maximum a
posteriori, MAP

1. INTRODUCTION

Expression arrays provide a powerful mechanism for measuring genomic expression levels within populations of cells.
These arrays permit the simultaneous detection and measurement of tens of thousands of species of mRNA in a single
experiment. The vast quantity of data being generated by these arrays presents us with a significant opportunity to
transform biology, medicine, and pharmacology using systematic computational methods.1–10 If it can be suitably
leveraged, the impact of this genomic expression data on the understanding of basic cellular processes, the diagnosis
and treatment of disease, and the efficacy of targeted therapeutics will be profound.

The effective utilization of large amounts of genomic expression data relies on the data being both available
and comparable. Ensuring availability requires that we gather disperse stores of genomic expression data into
large, publicly-available databases11–14 and represent data using standardized exchange formats currently under
development.15,16 However, data availability is of little value unless it is accompanied by data comparability. The
need for data comparability is the foundation that undergirds the issue of normalization.

Section 2 of this paper characterizes the different sources of variation in expression array data in order to provide a
suitable background and motivation for the problem of normalization. We then formulate the normalization problem
in Section 3 and present maximum likelihood (ML) and maximum a posteriori (MAP) estimates for parameters used
in modeling the reported expression levels in Sections 4 and 5, respectively. In Section 6, we use these estimates
to calculate optimal chip scaling factors for a data set consisting of 1280 Affymetrix GeneChip arrays. We close in
Section 7 by discussing these results and offering some directions for further investigation.
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2. SOURCES OF VARIATION IN EXPRESSION ARRAY DATA

We seek to learn how cells variously express their different genes in response to the diverse genetic and environmental
environments they encounter. We define these sources of variation collectively as interesting variation. Unfortunately,
reported expression levels also include other sources of variation that obscure the variation of interest. Sources of
obscuring variation include variation introduced during the process of sample preparation, during the manufacture
of the array, during the hybridization of the sample on the array, and during the scanning and analysis of fluorescent
intensity after hybridization. We discuss each of these sources of variation below.

2.1. Sources of interesting variation

Variation in the expression of genes arises at many different levels. At the lowest level, even if we consider a specific
gene in a specific cell under a specific environmental condition, there may be variation in the level of gene expression
since mRNA transcription and decay are discrete stochastic processes. In practice, most of the variation at this level
is hidden by the limitations of current array technology since we cannot measure genetic expression for a single cell
but are constrained to measure an ensemble average over a population of cells.

At the next level, if we examine the expression of multiple genes, we introduce more data variation in that different
genes are expressed in cells at distinct levels. For a specific genotype and environmental milieu, this variation in
the levels of expression across the various genes in a cell’s genome gives rise to an expression profile for the cell
population, acting as a genetic signature of sorts.

At yet the next level, if we observe the expression of genes under a diversity of conditions, we introduce even
more data variation because the expression profiles for populations of cells depend dramatically on the genetic
and environmental conditions that attain when the cells are observed. For example, knocking out the activity of
a protein, altering the temperature, modifying the nutritive environment, or exposing cells to agents that induce
infection, mutation, cellular stress, or signaling can all have a significant influence on the expression profile of the
population.

2.2. Sources of obscuring variation

Sources of variation introduced during the preparation of sample include variation during mRNA extraction and
isolation, variation in the introduction of fluorescent dye, and variation in the rate of dye incorporation. These are
influenced by pipette error, temperature fluctuations, and reagent quality.

Sources of variation introduced during the manufacture of the array include variation in the amount of probe
present at each feature or spot and variation in the hybridization efficiency of the probes for their mRNA targets.
The factors that influence these sources of variation depend upon the type of array being used. In the case of
Affymetrix GeneChip oligonucleotide arrays,17,18 probe concentration and efficiency are influenced by substrate sur-
face characteristics, linker effects, probe design and density, and hybridization kinetics and thermodynamics.19 In
the case of printed microarrays,20 probe concentration and efficiency are influenced by substrate surface characteris-
tics, cross-linking effects, cDNA library selection and amplification, hybridization kinetics and thermodynamics, and
probe deposition technology.

Sources of variation introduced during hybridization of the sample on the array include variation in the amount
of sample applied to the array and variation in the amount of target hybridized to the probe. The amount of target-
probe hybridization is influenced by the nature and concentrations of the buffers being used, the temperature and
duration of the competitive hybridization reaction, the amount of cross-hybridization interference, and the possibility
of probe saturation.

Sources of variation introduced after array hybridization include variation in optical measurements, variation in
the fluorescent intensity computed from the scan image, and, in the case of printed arrays, variation in the optical
response of the different dyes present in the sample. These can be influenced by spot misalignment, discretization
effects, imaging algorithms, and scanner lens and laser irregularities.



2.3. Separating interesting variation from obscuring variation

As reported expression levels are a combination of interesting variation and obscuring variation, we need a suitable
method for separating the two, where possible. Ideally, given reported levels of expression for a collection of genes
across a number of experiments, we would like to develop statistically sound estimates for the levels of gene expression
that include interesting variation but exclude, or otherwise account for, obscuring variation. In this paper, we develop
a model that serves as a first step for deriving such estimates in the specific context of Affymetrix GeneChip arrays.
While there remain sources of obscuring variation that cannot be accounted for in the model, we seek to present a
simple model that adequately explains a substantial amount of this variation.

3. PROBLEM FORMULATION

Let the reported expression levels of M spiked controls from a set of N Affymetrix GeneChips be denoted xij where i

indexes the spiked controls and ranges from 1 to M , while j indexes the chips and ranges from 1 to N . The reported
spiked control expression levels form an M ×N matrix as shown:











x11 x12 · · · x1N

x21 x22 · · · x2N

...
...

. . .
...

xM1 xM2 · · · xMN











(1)

We assume that a fixed amount of each spiked control is added to all chips. We denote the true level of expression
for each spiked control i to be mi, for all settings of j.

The reported expression level for each spiked control has a number of sources of variation, as discussed in Section 2.
For example, the level reported depends on the actual quantity of control material pipetted into the sample and the
actual amount of sample-control mixture injected into the GeneChip. The manufacture of the chip and the density of
the probes present on the chip introduce more variation. The temperature of hybridization and variations in the buffer
makeup also contribute to differences in reported levels. Because each of these sources of error is multiplicative, we
assume that the true expression levels are modified by a multiplicative factor rj which may (or may not) be different
for each chip j and also by a random multiplicative error eij for each i and j. Under this assumption of purely
multiplicative error, we have in formal terms:

xij = mi × rj × eij (2)

where the eij factors are assumed to be fairly small and close to 1. For convenience, we transform this equation
logarithmically so that the multiplicative errors become additive. Let yij = log(xij), µi = log(mi), ρj = log(rj), and
εij = log(eij) for all i and all j. The matrix of reported spiked controls after transformation becomes:











y11 y12 · · · y1N

y21 y22 · · · y2N

...
...

. . .
...

yM1 yM2 · · · yMN











(3)

and the equation describing the error model becomes:

yij = µi + ρj + εij (4)

We assume that εij is randomly distributed and is drawn from a central normal distribution with variance σ2
i .

We permit the variance σ2
i to be different for each spiked control i to account for the fact that different probes

on Affymetrix arrays may have different underlying variances in terms of their response to targets. With these
assumptions in place, we have a model describing how the (log) reported expression levels for the spiked controls are
distributed:

yij ∼ N(µi + ρj , σ
2
i ) (5)



4. MAXIMUM LIKELIHOOD (ML) ESTIMATION

With a model describing how the (log) reported expression levels for the spiked controls are distributed, we can
use maximum likelihood estimation to derive optimal values for the scaling factors necessary to properly normalize
each Affymetrix GeneChip. First, we form the log-likelihood L for observing the data yij under the assumption of
normality outlined in the previous section:

L = log





M
∏

i=1

N
∏

j=1

P (yij |µi, ρj , σ
2
i )



 (6)
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−
1
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(yij − µi − ρj)
2

σ2
i

)

(7)

Then, we solve for the values of µi, ρj , and σ2
i that maximize the (log) likelihood of observing the data:

argmax
µi,ρj ,σ2

i

L (8)

Setting ∂L
∂µi

= 0, ∂L
∂ρj

= 0, and ∂L
∂σ2

i

= 0 in turn yields estimates for the values of the parameters in question:

µ̂i =
1

N

N
∑

j=1

(yij − ρ̂j) (9)

ρ̂j =

M
∑

i=1

(σ̂2
i )−1(yij − µ̂i)

M
∑

i=1

(σ̂2
i )−1

(10)

σ̂2
i =

1

N

N
∑

j=1

(yij − µ̂i − ρ̂j)
2 (11)

As the estimates of the 2M + N unknown parameters are all coupled, it is necessary to iterate this solution until
convergence, which can be done in rounds. Each round monotonically increases the likelihood of the observed values
yij under the model.

Once the iteration of estimates has converged, the N estimates for ρj that emerge can be used to derive optimal
scaling factors for the N chips. We define the optimal scaling factor for chip j to be sj and compute it as shown:

sj ≡
1

r̂j

= e−ρ̂j =

M
∏

i=1

(

m̂i

xij

)wi

(12)

where m̂i = eµ̂i and we have defined the weights wi to be:

wi ≡
(σ̂2

i )−1

∑M
i=1(σ̂

2
i )−1

(13)

The optimal scaling factors are simply weighted geometric means of the ratios between m̂i and xij , as might be
expected, where the weight associated with each spiked control is inversely proportional to the estimated variance
for that spiked control.

5. MAXIMUM A POSTERIORI (MAP) ESTIMATION

The fact that the estimates of µi, ρj , and σ2
i are computed iteratively can lead to a problem: as the optimal scaling

factors are weighted geometric means where the weights are inversely proportional to the estimated variances, the
spiked control with the least variance is weighted increasingly more with each iteration until, in the limit, a single



spiked control can become scaled to its mean while the other spiked controls are essentially ignored. This can happen
because the variance of the dominant spiked control approaches zero as it is rescaled uniformly to its mean. To avoid
this pathological behavior and leverage the information about optimal scaling factors present in each of the spiked
controls rather than simply one of the spiked controls, we modify the solution to incorporate a regularization term
for the variances. This is accomplished by establishing prior distributions over possible values of the parameters and
then estimating the maximum a posteriori (MAP) values of those parameters. In our context, we need only establish
a prior for the variances σ2

i ; we can assume a flat prior over the means µi and log ratios ρj since we do not need
regularization terms for these parameters. The assumption of flat priors for µi and ρj means that the prior terms for
these parameters can be set to unity, and therefore the MAP updates for µ̂i and ρ̂j are identical to the ML updates
for these parameters.∗ Formally, we seek to maximize the posterior probability distribution for the parameters given
the reported expression levels:

P (µi, ρj , σ
2
i |yij) ∝ P (yij |µi, ρj , σ

2
i ) · P (σ2

i ) (14)

The likelihood term of the previous section reappears in this Bayesian formulation but is now accompanied by the
prior distribution over the variances, serving as a regularization term.

As the likelihood is normally distributed, we assume a conjugate form for the prior over the variances, namely,
a Wishart distribution. If we further assume that our prior belief about the variances is uninformative in the sense
that we have no reason to believe, a priori, that the value of σ2

i should be different for one value of i than for any
other, the multidimensional prior takes a relatively simple factorized form:

P (σ2
i ) =

M
∏

i=1

C(α, t)

(

1

σ2
i

)
α−3

2

e
−

t

2σ2
i (15)

Having defined the likelihood term and the prior term, we can proceed to maximize the a posteriori probability by
taking partial derivatives with respect to µi, ρj , and σ2

i and setting them equal to zero once again, yielding estimates
for the values of the parameters in question. This results in the same equations for µ̂i and ρ̂j as given above in (9)

and (10), but a new equation for σ̂2
i :

σ̂2
i =

∑N
j=1(yij − µ̂i − ρ̂j)

2 + t

N + α− 3
(16)

A non-zero prior setting for t prevents the estimates of σ2
i from converging to zero for any i during the iteration

process (except perhaps in the limit of infinite data).

6. RESULTS

We collected mRNA expression data from over 320 distinct experiments using Affymetrix Saccharomyces cerevisiae
GeneChips. As these were low-density Ye6100 chips, four chips were required per experiment to sample the levels
of expression for all 6179 ORFs. So we have spiked control measurements from 1280 Affymetrix GeneChips. The
collection is comprised of a wide range of different experimental conditions, including various comparisons between
wild type S. cerevisiae strains and strains with genetic deletions and functional knockouts, as well as time course
experiments detailing the response of S. cerevisiae to various environmental stresses like heat shock, pH fluctuations,
carbon-source shifts, and exposure to reactive oxygen species, for example.

Four different control species (DapX, LysX, PheX, and ThrX) are spiked into the extracted mRNA samples before
hybridization. Each Affymetrix Ye6100 GeneChip has a set of three probes for each of the spiked control species.
One probe contains features binding near the 3′ end of the target, one contains features binding near the middle
of the target, and one contains features binding near the 5′ end of the target. Thus, a total of 12 spiked control
expression levels are reported for each GeneChip. We use the 12× 1280 array of reported spiked control expression
levels to produce estimates of the optimal scaling factors for the 1280 GeneChips using the ML and MAP estimation
methods shown above. In both cases, results are nearly identical, though we display results below for only the MAP
estimates because of their regularization properties. We set α = 3 and t = 1 in our estimation, but varying these
parameters by an order of magnitude has little effect on the results (not shown).

∗Although the form of the updates is the same, the actual values of the estimates may be different as the values of µ̂i and

ρ̂j depend on the values of σ̂
2

i .
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Figure 1. Scatterplot of estimated standard deviation of log expression levels σi versus estimated mean of log
expression levels µi for 12 spiked controls. The estimated standard deviations are generally relatively low and
constant, with the exception of the first point. The greater estimated standard deviation associated with the point
corresponding to the lowest average level of expression suggests that additive error may be playing a significant role.
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Figure 2. Normal probability plot of estimated log ratios ρj . The plot reveals that the estimated log ratios are
roughly normally distributed.

Figure 1 is a scatterplot of the estimated standard deviation of log expression levels σi versus the estimated mean
of log expression levels µi for the 12 spiked controls added to the 1280 Affymetrix Ye6100 GeneChips. The estimated
standard deviations are generally relatively low and constant, with the exception of the first point. The greater
estimated standard deviation associated with the point corresponding to the lowest average level of expression
suggests that additive error may be playing a significant role. Although additive error tends to be swamped by
multiplicative error for large levels of expression, it should be incorporated in a more complicated model in order to
adequately capture sources of variation when expression levels are low.

Figure 2 is a normal probability plot of the estimated log ratios ρj . The plot reveals that the estimated log ratios
are roughly normally distributed. Recall that we made no assumptions about the form of the distribution of ρj in
our modeling.
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Figure 3. Histogram and normal probability plot of residual errors εij . The histogram plot on the left appears
normal at first glance but the normal probability plot of the same data on the right reveals that the distribution is
actually fairly heavy-tailed.

Figure 3 contains both a histogram and a normal probability plot of the residual errors εij , which represent
variations in yij that remain unexplained after optimally estimating µi and ρj . The histogram plot on the left
appears normal at first glance but the normal probability plot of the same data on the right reveals that the
distribution is actually fairly heavy-tailed. We discuss this in greater detail in Section 7.

Once we have computed the estimates of µi, ρj , and σ2
i , we can use the estimates of ρj to compute the optimal

scaling factors for the 320 chips. Figure 4 provides scatterplots of the standard deviation of log expression level versus
the mean of log expression level for the 6179 yeast genes with probes on the Ye6100 Affymetrix arrays. The plot
in the upper left represents unnormalized expression levels from 320 experiments over widely varying experimental
conditions. The plot in the upper right represents unnormalized expression levels from 8 wild type experiments with
constant experimental conditions. The lower plots are the same as the corresponding upper plots but are computed
from normalized expression levels. Considered column-wise, the plots in Figure 4 reveal that the normalization
process is successful in reducing the overall variation in the data. In the case of the 320 experiments, the average
standard deviation drops from 0.97 to 0.83, while in the case of the 8 wild type experiments, the average standard
deviation drops from 0.73 to 0.54. The fact that points on each plot with low average levels of expression tend to
have a much greater standard deviation suggests, consistent with our observations in Figure 1, that additive error is
playing a significant role at lower levels of expression.

7. CONCLUSION

In order for data from genomic expression arrays to be comparable, it is necessary that we understand the different
sources of variation that are present in reported gene expression levels. To effectively separate the interesting variation
in reported expression levels from the obscuring variation, we need statistically sound methods for deriving estimates
for the levels of gene expression that include interesting variation but exclude, or otherwise account for, obscuring
variation.

In this paper, we attempted to carefully characterize the different sources of variation present in reported gene
expression levels. In the context of Affymetrix GeneChips with spiked control probes, we presented an initial model
for explaining observed expression levels under the assumption of multiplicative error. We made no assumptions
regarding the distributions of the scaling factors applied to each chip, but assumed that the log residual errors
were normally distributed with a possibly different variance for each spiked control. Under these assumptions, we
developed maximum likelihood (ML) and maximum a posteriori (MAP) estimates of the unknown parameters and
used these estimates to compute optimal scaling factors for subsequent array normalization.
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Scatterplot, 320 Unnormalized Experiments
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Figure 4. Scatterplots of standard deviation of log expression level versus mean of log expression level for 6179
yeast genes. The plot in the upper left represents unnormalized expression levels from 320 experiments over widely
varying experimental conditions. The plot in the upper right represents unnormalized expression levels from 8 wild
type experiments with constant experimental conditions. The lower plots are the same as the corresponding upper
plots but are computed from normalized expression levels.

There are a number of interesting directions for extending this work. First, the formulation of our initial model is
fairly simple in that it is entirely multiplicative and does not incorporate enough terms to adequately model all the
sources of variation present in reported expression levels. A more sophisticated model would consider both additive
and multiplicative effects, as well as more complicated interaction terms.

Second, the error residuals εij are clearly not normal as postulated in the context of our initial model. We
could consider alternative descriptions of the distribution of these residuals, but the non-normality may be another
indication of the simplicity of the model discussed above. It is possible that a more sophisticated model would result
in error residuals that are distributed more normally.

Third, although the characterization of different sources of variation presented in Section 2 is applicable to all
array technologies, the specific model postulated in this paper is intended only for data gathered on Affymetrix
GeneChips that use spiked controls. However, the methodology is general and the ideas should be useful in other



settings with suitable modification. Moreover, we are in the process of developing methods for making data from
Affymetrix GeneChips comparable with data from printed microarrays, enabling the comparison of data across
technology platforms.
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