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Gene regulation provides the basis for cell type–specific function. 
Although differences in cis-regulatory DNA are known to underlie 
human variation and disease, predicting the effects of cis-regulatory 
variants on gene expression remains challenging.

Important strides have been made over the past decade in cataloging  
gene regulatory elements. A histone modification code has been 
found to correlate with cis-regulatory elements, such as enhancers 
and promoters, and chromatin states, such as active and poised1–5. 
Gene-expression reporter assays, which can now be done in high-
throughput formats6–8, have confirmed elements that are sufficient 
to activate gene expression in heterologous contexts. Additionally, 
techniques to identify distal DNA interactions have begun to associate 
enhancers with their cognate promoters9–12, which often are not in 
close proximity and can at times be megabases apart.

However, existing techniques for identifying gene regulatory 
regions have several shortcomings. Reporter assays focus on elements 
that are sufficient to activate gene expression in a heterologous con-
text and therefore cannot characterize elements that are necessary but 
not sufficient for gene expression or whose activity does not transfer 
to a non-native context. Additionally, genes can have many regula-
tory elements, and there is no high-throughput approach capable of 
determining the relative importance of each element in influencing 
native gene expression levels. Efforts to systematically test enhancers,  
predicted using histone modification data from reporter assays, have 
found that the majority of predicted enhancers do not activate gene 
expression as expected13. This suggests that additional assays are 
required to decipher native gene regulation.

CRISPR-Cas9 has been used in genome-wide mutation screens 
to identify genes required for survival, drug resistance and tumor  
metastasis14–18. In these screens, guide RNAs (gRNAs) targeting tens 
of thousands of sites within genes are cloned into lentiviral vectors 

and delivered as a pool into target cells along with Cas9. By identifying 
gRNAs that are enriched or depleted in the cells after selection for a 
desired phenotype, genes that are required for this phenotype can be 
systematically identified.

Here we develop CRISPR-Cas9–based MERA to analyze the regu-
latory genome at single-base resolution in its native context. MERA 
employs Cas9, which has been shown to cleave DNA when paired with a 
single gRNA19–22. In MERA, Cas9-induced double-strand breaks (DSBs) 
are repaired in an error-prone fashion by cellular non-homologous  
end joining (NHEJ), inducing a wide range of mutations initiated 
at the cleavage site that typically are small (<10-bp) insertion or 
deletions (indels) but can include larger (>100-bp) indels20,21,23 and 
altered individual bases.

The MERA assay first carries out a high-throughput screen that 
maps the effects of genomic variation on gene expression. Selected 
elements can then be characterized by functional motif discovery 
and validated. We map elements that are required for gene expression  
by expressing gRNAs that tile a gene’s cis-regulatory region and meas-
uring how likely each gRNA is to diminish gene expression. We then 
perform deep sequencing of the gRNA-induced mutations in targeted 
regions to reveal thousands of genotypes that either did or did not 
lose gene expression. This enables us to characterize the functional 
importance of each base. Finally, we validate the results of the MERA 
screen through the replacement of selected genomic elements by 
homologous recombination.

RESULTS
Developing the MERA assay
There are two distinctions between MERA and previous gene  
mutation screening approaches that spurred us to alter the CRISPR-
Cas9–based mutation screening technique. First, the targeted sites 
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in our screen are often close together, so cells receiving more than 
one gRNA may undergo deletion instead of mutation of a region, 
which would complicate downstream analysis. Although this issue 
can be addressed for lentiviral libraries by lowering the multiplicity 
of infection (MOI), we sought a more elegant approach to limit cells 
to a single gRNA. Second, each gene for which we perform MERA 
requires a different gRNA library. All high-throughput CRISPR-Cas9–
based approaches to date have required cloning gRNA libraries into a  
lentiviral vector and producing a batch of virus, a time-consuming  
process that would have to be done separately for each library.  
We sought an approach that would allow a library to be used on  
the day it arrives.

To enable the efficient targeting of precisely one regulatory element 
per cell, we devised a strategy that ensures that only one gRNA can 
be expressed per cell and allows gRNA libraries to be used without 
any molecular cloning into a delivery vector. We integrated a sin-
gle copy of the gRNA expression construct (a U6 promoter driving 
expression of a dummy gRNA hairpin) into the universally acces-
sible ROSA locus of mouse embryonic stem cells (mESCs) using 
CRISPR-Cas9–mediated homologous recombination (Fig. 1a). We 
then use CRISPR-Cas9–mediated homologous recombination to 
replace the dummy gRNA with a gRNA from our library. We use 
PCR to add 79- to 90-bp homology arms to our gRNA library, as we 
found that longer homology arms increase background cutting of 
gRNAs transcribed from unintegrated PCR 
fragments (Supplementary Fig. 1). We then 
introduce the pool of gRNA homology frag-
ments into cells along with Cas9 and a gRNA 
plasmid that induces a DSB at the dummy 
gRNA site. In a substantial fraction of cells 
(~30%), the dummy gRNA is repaired by 
homologous recombination, creating a func-
tional gRNA expression construct targeting a 
single genomic site from the library (Fig. 1a  
and Supplementary Fig. 2). Only random 
chance dictates which gRNA is integrated in 
each cell, allowing a pooled screen in which 
each cell expresses only one gRNA.

Of note, the genomic integration–based 
gRNA screening platform used in MERA 
could also be applied to other CRISPR-based 

high-throughput screens as long as the cell line used undergoes homol-
ogous recombination at appreciable frequency, and it could be modified 
to achieve expression of any set number of gRNAs per cell for combi-
natorial screening. Although the integration-based approach is thus 
ill-suited to in vivo screens or screens in cells with limited homologous 
recombination, it provides an alternative to lentiviral screening that sub-
stantially reduces the time, effort and cost involved in CRISPR library 
screening for applicable cell lines such as embryonic stem cells.

We generated GFP knock-in lines for four mESC-specific genes, 
Nanog, Rpp25, Tdgf1 and Zfp42 (Fig. 1b, Supplementary Fig. 3, ref. 24),  
and synthesized corresponding gRNA libraries, each with 3,908 
gRNAs tiling cis-regulatory regions. In the case of Tdgf1, the library 
targeted the 40-kb region proximal to the gene in an unbiased manner. 
In other cases, we selected regions proximal to the gene most likely to 
be involved in regulation based on enhancer-like features25–31 that are 
a maximum of ~150 kb away from the gene, as well as distal regions 
up to 92 Mb away from the gene when ChIA-PET distal interaction 
data2 suggested a possible interaction with the target gene promoter3. 
Among the 3,621 gRNAs found to be integrated in at least one of 
three replicates of the Tdgf1 library, the mean distance between adja-
cent gRNAs was 11 bp. Of note, repetitive and unmappable genomic 
regions cannot be tiled with gRNAs, and gRNAs targeting regions 
whose sequences differ from those in the reference genome cannot 
be appropriately tiled without genome sequence data of the cell line. 
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Figure 1 Multiplexed editing regulatory 
assay (MERA). (a) In MERA, a genomically 
integrated dummy gRNA is replaced with a 
pooled library of gRNAs through CRISPR-
Cas9–based homologous recombination such 
that each cell receives a single gRNA. Guide 
RNAs are tiled across the cis-regulatory regions 
of a GFP-tagged gene locus, and cells are 
flow cytometrically sorted according to their 
GFP expression levels. Deep sequencing on 
each population is used to identify gRNAs 
preferentially associated with partial or 
complete loss of gene expression. (b) Zfp42GFP 
mESCs show uniformly strong GFP expression. 
After bulk gRNA integration, a subpopulation of 
cells lose GFP expression partially or completely. 
These cells are flow cytometrically isolated for 
deep sequencing. (c,d) Bulk reads for gRNAs 
are highly correlated between replicates from 
the Tdgf1 (c) or Zfp42 libraries (d), indicating 
consistent and replicable integration rates.
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Figure 2 MERA enables systematic 
identification of required cis-regulatory 
elements for Tdgf1. (a) A genomic view of  
the 40-kb Tdgf1 proximal regulatory region 
showing the following in track order from top  
to bottom. (i) The locations of all 3,621 
integrated gRNAs in any one of three biological 
replicates. (ii) gRNAs enriched in GFPneg cells 
(red) in any one of three replicates at  
P < 10−10 using a binomial test as described in 
the methods; bar height is proportional to the 
mean log-ratio of GFPneg to bulk reads across 
replicates. (iii) gRNAs enriched in GFPmedium 
cells (cyan) in any one of three replicates at  
P < 10−10 using a binomial test as described in 
the Online Methods; bar height is proportional 
to the mean log-ratio of GFPneg to bulk reads 
across replicates. (iv) Annotated genes.  
(v) Predicted enhancers (cyan, weak; red, strong). 
(vi) DNase I hotspot regions. (vii) Transcription 
factor binding density based on ChIP-seq data. 
(viii) H3K4me3 ChIP-seq data (blue). Several 
active regulatory elements coincide with dense 
clusters of overlapping gRNAs. Numerous 
gRNAs significantly enriched in the GFPneg 
population are also observed in regions devoid 
of regulatory element features (UREs). Genomic 
regions of interest are shaded, annotated above 
the plot, and described in further detail in  
the text. (b) Individual validation of specific 
gRNAs detected as enriched in the GFPneg 
population in the MERA assay using the  
self-cloning CRISPR system. The proportion  
of cells undergoing GFP loss upon incorporation 
of a particular gRNA divided by the proportion 
of cells undergoing GFP loss upon incorporation 
of GFP-targeting positive control gRNA is 
plotted against the actual genomic location of 
the gRNA. Negative controls defined as gRNAs 
showing no reads in either GFPneg or GFPmedium 
populations but present in the bulk population 
are highlighted in red. Error bars indicate 
experimental variability in two replicates.  
(c) Correlation of gRNAs significantly enriched 
in the GFPneg population in fixed-size bins varying from 100 bp to 1 kb for biological replicates in Tdgf1 libraries. (d) Fraction of GFPneg-enriched 
gRNAs among the different functional genomic categories surrounding the Tdgf1 gene. Error bars show variability due to the three biological replicates.

Each library also contained ten positive control gRNAs targeting  
the GFP open reading frame that we expected would cause loss  
of GFP expression.

MERA screens identify required regulatory regions
We performed four biological replicate screens for Zfp42 and Tdgf1, 
two replicates for Nanog and a single replicate for Rpp25. Selected 
screen hits were independently confirmed as described below. 
Starting 1 week after electroporation, we collected genomic DNA 
of the unsorted library-integrated cells to examine differences in 
gRNA integration. Over 90% of correctly synthesized gRNAs were 
detected in the genomic DNA for both Tdgf1 and Zfp42 libraries 
(Supplementary Methods). In addition, gRNA integration rates in 
the bulk populationshowed concordance between the biological rep-
licates (Fig. 1c,d and Supplementary Fig. 4a). All of the regulatory 
regions that we surveyed had sufficient coverage of gRNAs to allow 
us to assay their detailed function (bulk density track, Figs. 2 and 3; 
Supplementary Figs. 5 and 6).

Library-integrated mESCs were then flow cytometrically sorted to 
identify gRNAs that induced loss of GFP expression. Separate GFPneg 

and GFPmedium populations were sorted in the Tdgf1GFP and Zfp42GFP 
experiments, whereas GFPneg and GFPmedium populations were com-
bined in the NanogGFP and Rpp25GFP experiments because of incomplete 
population separation (Fig. 1b and Supplementary Fig. 3).

The distribution of gRNA abundance in GFPneg and GFPmedium pop-
ulations in all screens clearly indicates that a subset of cis-regulatory  
genomic space is required for gene expression at all four gene loci 
(Figs. 2a,b and 3, Supplementary Tables 1–4). We detected signifi-
cant over-representation of nearly all integrated positive-control GFP 
coding region–targeting gRNAs in all replicates (Figs. 2d and 3c, 
Supplementary Fig. 4b), suggesting that MERA robustly identifies 
gRNAs that induce loss of gene expression. Using the relative abun-
dances of GFP coding region-targeting positive control gRNAs and 
the dummy gRNA as a negative control, we devised a method to detect 
gRNAs with statistically significant over-representation in GFPneg and 
GFPmedium populations (Online Methods, Supplementary Fig. 4b,c, 
Supplementary Table 5).

In our MERA screen of Tdgf1, we observed differential enrichment of 
gRNAs in established functional categories of genomic elements asso-
ciated with gene regulation27–31 (Fig. 2a,d and Supplementary Fig. 5).  
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The highest density of significant gRNAs in the genomic regions 
was observed at the promoter region for Tdgf1, the strong proximal 
enhancer 4 kb upstream of Tdgf1 and the strong enhancer overlapping 
the Lrrc2 promoter (Fig. 2a,d).

Surprisingly, we observed a novel class of genomic elements down-
stream of Tdgf1 (Fig. 2a, highlighted in gray) that did not coincide 
with any known markers of regulatory activity, such as H3K27ac, 
H3K4me1, H3K4me3, known transcription factor (TF)-binding 
sites, DNase I hypersensitivity sites, predicted DNase I hotspots, or 
enhancers predicted from chromatin modifications. We designated 
such elements that do not contain any of these markers as unmarked 
regulatory elements (UREs). UREs were often over 1 kb in length and 
produced a loss of GFP comparable to that induced by some distant 
enhancers (Fig. 2d).

In our MERA screen of Zfp42, we also observed the strongest 
enrichment for GFP loss in the promoter and proximal enhancer 
regions (Fig. 3a,c). We observed enrichment of gRNAs in the GFPneg 
and GFPmedium population at UREs in regions II, III, VI and VII  
(Fig. 3a and Supplementary Fig. 6a) and observed the participation  
of the neighboring Triml2 promoter in regulating Zfp42 (Fig. 3a 
and Supplementary Fig. 6b). We also note that regulatory regions 
upstream of Zfp42 tended to cause intermediate rather than complete 
loss of GFP (GFPmedium in red versus GFPneg in blue; Fig. 3c), sug-
gesting that these enhancers are each responsible for only part of the 
overall Zfp42 expression level in cells.

Validation of MERA hits
To determine the accuracy of the MERA screen in systematically 
determining required cis-regulatory regions, we first examined rep-
licate consistency among our Tdgf1, Zfp42 and Nanog MERA data. 

Spatial patterns of GFPneg gRNA enrichment were largely conserved 
between replicates, with Pearson correlation values of 0.8 at a 300-bp 
bin size (Figs. 2c and 3b, Supplementary Fig. 6c). At an individual 
level, the overlap between gRNAs enriched in GFPneg populations 
between replicates was significant for all replicates (hypergeometric 
P value <0.001); however, it was not as high as for binned regions, 
likely because a single gRNA can cause thousands of distinct mutant 
genotypes with varying phenotypes.

To analyze false positives caused by off-target effects, we examined 
how putative off-target effects affect MERA results using a model 
based on GUIDE-Seq32 (Online Methods, Supplementary Fig. 7).  
We found that when we eliminated gRNAs with potential off- 
target effects from our analysis, the global distribution of significantly 
enriched gRNAs along the regulatory landscape of the gene was unal-
tered and relative contributions of different functional categories were 
unaffected (Supplementary Figs. 5a and 6a,c). Furthermore, several 
gRNAs with no predicted off-target effects supported the regulation 
of Tdgf1 by the promoter of Lrrc2 (Supplementary Fig. 5b), the pro-
moter of Triml2 and a URE region (Supplementary Fig. 6a–c), and 
none of these regions was more likely to contain off-target effects than 
other screened regions.

To analyze potential off-target effects with an independent method, 
we asked whether any gRNAs from the Tdgf1 library would extin-
guish Zfp42GFP activity and vice versa. We found that a much smaller 
percentage of cells lost GFP upon targeting by a mismatched gRNA 
library than upon targeting by the matched library (Supplementary 
Fig. 8). Sequencing revealed that the gRNAs enriched in GFPneg 
mismatched library–targeted cells were predominantly GFP control 
gRNAs, with a small number of non-clustered gRNAs displaying off-
target activity (Supplementary Figs. 5 and 6). Thus, the clustered 
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Figure 3 MERA enables systematic identification of required cis-regulatory elements  
for Zfp42. (a) A genomic view the Zfp42 proximal regulatory region showing the following  
in track order. (i) The location of all 1,643 integrated gRNAs. (ii) gRNAs in GFPneg cells  
(red) in any one of four replicates at P < 10−10 using a binomial test as described in the  
methods; bar height is proportional to the mean log-ratio of GFPneg to bulk reads.  
(iii) Enriched gRNAs in GFPmedium cells (cyan) in any one of four replicates at P < 10−10  
using a binomial test as described in the Online Methods; bar height is proportional to the  
mean log-ratio of GFPneg to bulk reads. (iv) Annotated genes. (v) Predicted enhancers (cyan,  
weak; red, strong). (vi) DNase I hotspot regions. (vii) Transcription factor binding density  
based on ChIP-seq data. (viii) H3K4me3 ChIP-seq data. Several active regulatory elements  
coincide with dense clusters of overlapping gRNAs. Genomic regions of interest are shaded,  
annotated above the plot and described in further detail in the text. (b) Correlation of gRNAs  
significantly enriched in the GFPneg population in fixed-size bins varying from 100 bp to 1 kb for biological replicates in Zfp42. (c) Fraction of GFPneg 
enriched gRNA among the different functional genomic categories surrounding the Zfp42 gene. Error bars show variability due to the four biological replicates.
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enrichment of GFP loss at enhancers, neighboring promoters and 
UREs in MERA is not replicated by computationally predicted or 
experimentally determined off-target effects, leading us to conclude 
that GFP loss in these regions is a result of on-target gRNA effects 
(Supplementary Figs. 5a–c and 6a,b).

To determine the false-positive rate at the level of individual gRNAs, 
we introduced individual gRNAs to determine whether their rate of 
GFP loss correlated with their activity in the pooled MERA screen. 
These gRNAs fell within several functional categories, including 
UREs and neighboring promoters (Fig. 2a, highlighted in gray, and  
Fig. 2b). We confirmed significantly increased GFP loss in 29/30 
gRNAs from these screens as compared to 5 similarly located con-
trol gRNAs (Fig. 2b). Altogether, we conclude that MERA has a low 
false-positive rate.

We next sought to determine the false-negative rate of MERA.  
As opposed to ORF-targeting screens, in which all gRNAs are assumed 
to be equivalently likely to induce frameshift mutations that inactivate 
gene function, we found that regulatory mutations induce more variable  
phenotypes with regard to gene expression (see Supplementary 
Discussion). In our individual follow-up assays, we found that 
gRNAs targeting the GFP ORF induced GFP loss in >90% of cells, 
those targeting promoter regions induced GFP loss in 20–40% of 
cells and those targeting distal regulatory elements induced GFP loss 
in 5–40% of cells, while negative controls induce GFP loss in <2% of 
cells (Fig. 2b). We assert that this phenotypic diversity results from 
the wide spectrum of mutations at target sites, which are differentially 
likely to disrupt functional regulatory elements such as transcription 
factor–binding sites. We confirm this hypothesis in several cases by 
performing functional motif discovery, described later in the text.

To assess the false-negative rate of MERA gRNAs, we examined 
regions in our data with strong likelihood of inducing GFP loss.  
We found that 10/10 GFP-targeting gRNAs in all four GFP lines were 
highly enriched in GFPneg cells (Figs. 2d and 3c). Additionally, 67/83 
(81%) gRNAs that target the first 700 bp of the Rpp25 ORF were 
highly enriched in GFPneg cells. In 500 bp around the Tdgf1 promoter 
region, 48/59 (81%) of gRNAs induce GFP loss in multiple replicates 
(Supplementary Fig. 4f). Thus, a high percentage of gRNAs expected 
to have an effect on gene expression were enriched in GFPneg cells. 
It is unclear whether the 20% of gRNAs in these regions that do not 
induce GFP loss are false negatives or true negatives, as their mecha-
nism of inducing GFP loss is not as direct as when the GFP ORF itself 
is targeted. However, even if this appreciable percentage of individual 
gRNAs are false negatives, it does not impair the ability of MERA to 
determine required regulatory regions, as the high density of gRNAs in 
a region (~1 per 8 bp) allows highly reproducible resolution at the level 
of 100-1,000 bp (Figs. 2c and 3b). We then asked whether annotated 
regulatory regions are necessary for gene function. An appreciable  
percentage of gRNAs induced significant GFP loss at 9/9 of Tdgf1 
predicted enhancers (±20 kb around Tdgf1) and 6/7 of predicted Zfp42 
enhancers (−21 to +45 kb around Zfp42) (Supplementary Tables 6 
and 7). However, there was substantial heterogeneity in the percent-
age of gRNAs within an enhancer that induce GFP loss, and some 
DNase-hypersensitive sites without enhancer histone modifications 
contain a high fraction of GFP loss-inducing gRNAs (Supplementary 
Tables 6 and 7), indicating that enhancer histone modifications do 
not entirely predict required regulatory regions. We cannot rule out 
the possibility that certain regions may suffer from systematic inef-
ficiencies in gRNA targeting.
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Figure 4 Functional motif discovery analysis of region-specific mutant genotypes at enhancers reveals required regulatory motifs. (a) A schematic of the 
procedure involved in finding mutations induced by a particular gRNA. (b) Plot showing the genomic regions surrounding two gRNAs at a proximal Tdgf1 
enhancer region (gRNAs are shaded) showing overlap with DNase I hotspot and predicted enhancer regions, and transcription factor binding sites for Stat3, 
Tcfcp2l1 and Sox2. (c) ROC curve for fivefold classification of GFPneg and GFPpos genotypes using mutations within −20 to +20 bp of the gRNA along left 
and right paired-end reads as features. (d) Motif logo for region mutated by gRNAs with base scores computed as log-ratios of the Hellinger distance of the 
GFPneg genotypes at a base to the reference base to the Hellinger distance of the GFPpos genotypes at a base to the reference base, caused by Tdgf_gRNA_1 
and Tdgf_gRNA_2 along the left paired end read. The location of the Stat3 binding site with its positive-strand motif is shown along the length of the gRNA.
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Gene regulatory trends emerging from MERA screens
Our MERA results revealed that Tdgf1, Nanog, Rpp25 and Zfp42  
have different regulatory architectures (Figs. 2 and 3, Supplementary 
Figs. 5, 6 and 9). All regulatory regions within ±20 kb of the Nanog 
promoter were associated with clusters of highly enriched gRNAs, 
and 20–40% of the tested gRNAs in predicted enhancers and DNase I 
hotspots proximal to Nanog resulted in GFPneg cells (Supplementary 
Fig. 9c). In contrast, the Rpp25 gene shows a dense concentration of 
significant gRNAs at its promoter and short ORF region. Other proxi-
mal regulatory regions of Rpp25 had 12% of tested gRNAs resulting 
in GFPneg cells (Supplementary Fig. 9d). Tdgf1 shows a similar trend 
to Nanog, with dense clusters of significant gRNAs in the proximal 
regulatory regions (Fig. 2a,d). UREs were also seen in cis-regula-
tory regions near Rpp25 (Supplementary Fig. 9b). In Nanog, a distal 
ChIA-PET region >92 Mb away showed several strongly enriched 
gRNAs, whereas three other distal ChIA-PET regions showed no 

strongly enriched gRNAs (Supplementary Fig. 9a), indicating that 
MERA is capable of measuring the functionality of long-distance 
chromatin interactions.

One observation common to all genes is the participation of the 
promoters of other genes in regulation. In some cases these gene 
promoters are several million bases away. Examples of foreign pro-
moter involvement can be seen in the cases of the Lrrc2 promoter in 
Tdgf1 (Fig. 2a,d), Mirc35hg in Nanog (Supplementary Fig. 9a) and 
Scamp5 and Cox5a in Rpp25 (Supplementary Fig. 9b). Previous stud-
ies have documented the existence of dual-property elements33 that 
can act as either promoter or enhancer in different cellular contexts. 
Additionally, it is known that neighboring promoters often interact 
with each other34 and that expression of neighboring genes is often 
coordinated35. Here we observe that active promoters may coordi-
nate gene expression patterns of neighboring genes by functioning 
as enhancers within the same cellular context.
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Functional motif discovery to examine MERA-predicted 
regulatory regions
The second phase of MERA uses functional motif discovery to iden-
tify the causal elements governing expression at MERA screen hits. 
Because Cas9 induces random mutations, a pool of mESCs treated 
with Cas9 and a single gRNA will contain thousands of distinct mutant 
genotypes centered on the gRNA cleavage site. Recently, TAL effector 
nucleases have been used to derive functional footprints of regulatory  
DNA36. We hypothesized that we could pinpoint DNA sequence 
motif(s) that cause GFP loss by identifying sequence features that 
consistently differ between thousands of GFPpos and GFPneg geno-
types at a given site (Fig. 4a). Functional motif discovery is achieved 
by performing individual Cas9-mediated mutation by a selected  
gRNA, obtaining thousands of genotypes from both GFPpos and 
GFPmedium/neg cells by high-throughput sequencing, and then sum-
marizing the observed genotypes as motifs that reveal which bases 
are important for gene expression (Fig. 4a, Online Methods). Using 
the differences in fractions of genotypes at positions along the gRNA, 
we defined a base-level importance score that was independent of 
the cutting biases of the gRNA and built a random-forest37 classifier 
to gauge the accuracy of distinguishing GFPneg or GFPpos genotypes 
using base-level features (Online Methods).

We first tested to see whether functional motif discovery in 
Tdgf1 and Zfp42 enhancer regions would permit us to classify geno-
types held out of initial algorithmic training as GFPneg or GFPpos.  
We selected two overlapping gRNAs for functional motif discovery 
in a Tdgf1 proximal enhancer that overlapped binding sites for the 
key mESC transcription factors Stat3, Sox2 and Tcfcp2lI, of which 
Stat3 is the only factor with a direct binding site. Using mutations 
constrained between −20 and +20 bp of the gRNA (Supplementary  
Fig. 10), we were able to classify held out genotypes with an area under 
the curve (AUC) of 0.81 (Fig. 4c), and we observed an enrichment of 
the bases for the Stat3 motif25 in both the left and right paired-end reads  
(Fig. 4d and Supplementary Fig. 11e). We achieved similar success 
at Zfp42 enhancer sites, identifying required bases around Nrf1 and 
p300 binding sites (Supplementary Figs. 12 and 13).

We next applied functional motif discovery to two gRNAs in a URE 
~12 kb downstream of the Tdgf1 transcript (Fig. 5a). We obtained 
high classification accuracy for held-out genotypes from both gRNAs 
(AUC 0.81 and 0.76, Fig. 5b and Supplementary Fig. 14c), and we 
observed blocks of consecutive bases whose deletion correlated with 
GFP loss (Fig. 5c,d and Supplementary Fig. 15d,e), suggesting focal 
regions of the genome that are required for URE function. Altogether, 
we conclude that functional motif discovery is a valuable method for 
ascertaining which bases at MERA-identified regulatory regions are 
required for gene expression. In enhancer regions, these bases cor-
respond to known binding motifs, and in UREs, we identify blocks 
of bases that are required for gene expression.

We then used homologous recombination to confirm that the Tdgf1 
enhancer and URE regulatory elements are truly required for gene 
expression in the third phase of MERA. We used flanking gRNAs to 
induce short (>100-bp) deletions in two regions predicted to induce 
GFP loss by our MERA screen, one in the Tdgf1 enhancer and one 
at a URE. As expected, a subset of cells lost GFP expression, and 
we obtained clonal GFPneg lines containing the deletion genotype  
(Fig. 6a,b). We then used homology-directed repair to restore the 
wild-type genotype in these cells, finding at each site that a large 
percentage of cells reverted to a GFPpos state (Fig. 6b). We replicated 
this experiment in wild-type cells without a Tdgf1GFP allele, find-
ing that clonal deletion cells lost Tdgf1 RNA expression, and clonal 
repaired lines restored Tdgf1 expression (Fig. 6c). This robust and 

straightforward relationship between local genotype and GFP expres-
sion provides compelling evidence that the local DNA sequence at a 
URE is required for Tdgf1 expression.

DISCUSSION
MERA offers an unbiased, high-resolution approach to directly inter-
rogate the function of the regulatory genome. It not only provides a 
survey of required cis-regulatory elements but also enables functional 
motif discovery to dissect the precise nature of identified regulatory 
elements. We find evidence that neighboring gene promoters as well 
as unmarked regulatory elements (UREs) that are not associated with 
conventionally expected DNase hypersensitivity and histone mark 
features play unexpectedly large roles in controlling gene expres-
sion. This observation reinforces the importance of direct pertur-
bation analysis to definitively characterize genome function, as we 
observe that correlative genome annotation does not fully predict  
regulatory requirement.

Although we do not yet have definitive data as to the function of 
UREs, we find that a URE downstream of the Tdgf1 gene is highly 
sensitive to base substitution at a string of consecutive bases, sug-
gesting that its DNA sequence is crucial to its regulatory activity. 
Furthermore, we find the first half of this URE to be highly conserved 
(phastcons score >0.85, Supplementary Fig. 15e), indicating poten-
tial functional significance of the genomic region. Consistent with 
these data, UREs may be RNA templates, elements bound by unchar-
acterized protein factors, or spacers whose precise base sequence is of 
secondary importance. We cannot exclude the possibility that UREs 
are active only in a cellular subpopulation and thus conventionally 
expected DNase hypersensitivity and histone mark features are not 
detected when the entire cellular population is assayed.

We designed our gRNA libraries to target a mix of previously anno-
tated and unannotated cis-regulatory regions, and thus we did not 
uniformly tile the proximal regions of any of these genes. Therefore, 
we cannot estimate the frequency of UREs, and we expect that future 
MERA screens with even more extensive coverage at more loci will 
elucidate how pervasive UREs and neighboring gene promoters are 
in the regulatory architecture of the genome.

MERA is complementary to high-throughput reporter assays, and 
future experiments including both approaches should provide insight 
into the degree of concordance between necessary and sufficient 
gene regulatory elements. MERA also enables quantitative assess-
ment of the relative effects of distinct cis-regulatory elements on gene 
expression and could potentially provide insights into how regulatory 
regions combine to achieve desired levels of expression. We note that 
lentiviral delivery can be used to expand the range of cell types that 
can be analyzed by MERA. Extending MERA to explore how changes 
in individual cis-regulatory elements alter gene networks will aid our 
understanding of how cis-regulatory variants lead to human disease. 
We expect that the direct interrogation of variant locations discovered 
in genome-wide association studies by MERA will provide a rapid way 
to screen such variants for function in relevant cell types.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Data have been submitted to the NCBI GEO  
database under accession code GSE76318.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.

http://dx.doi.org/10.1038/nbt.3468
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ONLINE METHODS
Library design for MERA. In addition to 10 GFP-targeting gRNAs, we 
designed 3,908 gRNAs specific to each of the four libraries for TDGF, Nanog, 
Zfp42 and Rpp25. For TDGF we selected a −20 kb to +20 kb proximal region 
around the TDGF promoter to profile 3908 gRNAs that were designed for 
this region. For Nanog, Rpp25 and Zfp42, we prioritized the design of 3,908 
gRNAs based on regions of strong DNase I enrichment going up to 100 kb 
on either side of the gene promoter. Further, we used PolII ChIA-PET data to 
find distal regions that are predicted to interact with the promoter. In case of 
a large number of ChIA-PET regions, we filtered interactions based on other 
enhancer features such as p300 binding, DNase I enrichment, active histone 
modifications etc. overlapping distal ChIA-PET regions.

We used the following algorithm to design gRNAs:

1.  Determine region of interest for guide RNA design.
2.  Find all GG sequences on both the forward and reverse strand.
3.  Design guide RNA in the following format. Guide RNAs should have 

19–20 bp of homology to the genome immediately preceding the NGG 
“PAM” sequence:
a.  If the genome sequence is GNNNNNNNNNNNNNNNNNNN NGG  

(GN19NGG), the guide RNA sequence should be GNNNNNNNNNNN 
NNNNNNNN (GN19);

b.  If a is not satisfied but GNNNNNNNNNNNNNNNNNN NGG 
(GN18NGG) is satisfied, the guide RNA sequence should be 
GNNNNNNNNNNNNNNNNNN (GN18);

c.  If a and b are not satisfied, the guide RNA sequence should be 
GNNNNNNNNNNNNNNNNNNNN (GN20) where the genomic 
sequence is NNNNNNNNNNNNNNNNNNNN NGG (N20NGG)—it 
does not matter if the first G is in the genome.

4.  We filtered adjacent gRNAs shifted by just 1 bp until we were able to 
achieve the 3908 gRNAs required to tile the region.

5.  Libraries were ordered as 98- to 100-bp sequences containing a 19- to  
20-bp protospacer targeting the genomic sequence of interest, an 
optional G if the protospacer does not already begin with one, and sur-
rounding sequences homologous to the U6 promoter and gRNA hairpin. 
We ordered gRNA libraries of 3,918 members from LC Sciences.

TTATATATCTTGTGGAAAGGACGAAACACC[GN18-20]GTTTAAGAG
CTATGCTGGAAACAGCATAGCAAGTTTAAATAAGGCTAGT

All libraries contained 10 gRNAs targeting the GFP open reading frame to 
serve as positive controls (Supplementary Methods).

Mapping of MERA reads. We mapped the sequence composing of sample 
barcode, primer and exact matches of the designed gRNA sequence to the 
sequenced reads. Counts for each gRNA for either GFPneg, GFPmedium or bulk 
populations were obtained by counting the number of sequenced reads that 
showed exact matches to the gRNA.

The gRNA integration rate into cellular genomic DNA was found to be 93% 
for Tdgf1 but appeared to be only 43% for Zfp42. In order to determine if this 
was caused by inefficient integration or due to synthesis errors, we sequenced 
the gRNA library for Zfp42 and found that only 1,723 of the 3,919 guide RNAs 
in the Zfp42 library were synthesized accurately. Among these, 1,718/1,723 
were detected in the bulk library of at least one replicate. Hence, we esti-
mate that the integration rate of gRNAs is >90% of those that are synthesized. 
Oligonucleotide library synthesis quality is unaffected by whether a gRNA 
integration approach such as MERA or a lentiviral cloning approach is taken, 
and thus MERA enables integration of the vast majority of available gRNAs.

Identification of gRNAs that are significantly enriched in GFPneg and GFPmedium 
populations. In order to detect gRNAs with statistically significant overrepresenta-
tion in GFPneg and GFPmedium populations, we perform a step-wise procedure.

Step 1. We normalize the gRNA sequence read counts, which can vary between 
sequencing runs of bulk, GFPmedium and GFPneg populations due to differences in 
cell number and diversity of the respective populations (Supplementary Fig. 4b,c, 
x-axis versus y-axis limits) . In order to normalize these read ranges, we assume that 
the positive control gRNAs targeting the GFP coding region always induce loss of 
GFP expression, which is consistent with our previous results showing that over 

99% of cells receiving a GFP-targeting gRNA lose GFP expression24. In addition, 
GFPneg and to a lesser extent GFPmedium reads are always observed to be propor-
tional to the bulk reads for the GFP targeting gRNAs, to a much greater extent than 
for all guide RNAs (Supplementary Fig. 4c,d and Supplementary Table 5). Hence, 
we predict the number of GFPneg reads we would see for each gRNA given its bulk 
and GFPmedium count if it always caused GFP loss. In order to do this, we build two 
different kinds of linear models depending on the data available

I. In case of Tdgf1GFP and Zfp42GFP, we have a GFPmedium as well as GFPneg 
population, along with 3 to 4 biological replicates per cell-line. We assume that 
for any GFP-targeting gRNA, the majority of bulk reads are derived from the 
GFPneg population. However, each gRNA may also cause some intermediate loss 
of GFP due to variable mutations or imperfect sorting. In addition, there is a low 
gRNA-dependent intercept or GFPpos population, which may be a small fraction 
of mutations induced by a particular gRNA that do not cause GFP-loss.

In order to transform the bulk reads to the GFPneg scale, we model GFPneg 
as the dependent variable, and GFPmedium and bulk reads as independent vari-
ables using a generalized linear model38. The intercept is modeled as being 
dependent on the gRNA but independent across replicates, while the slopes 
are considered as having a replicate-dependent component also.

The model is of the form 

y x x z g x g x g~ ( | ) ( | ) ( | )1 2 11 1 1 2 2 2+ + + +  

where y = GFPneg, x1 = bulk, x2 = GFPmedium, z11 = intercept, g1 = grouping 
by gRNA, g2 = grouping by replicate.

In order to transform the bulk reads to the GFPmedium scale, we use the same 
model but with y = GFPmedium, x2 = GFPneg.

II. In case of NanogGFP and Rpp25GFP, we have only a GFPneg population 
and at most 2 replicates. In this case we build an independent linear regression 
model for each replicate of the form: 

y ~ x z1 11+  

where y = GFPneg, x1 = bulk, z11 = intercept.
Using the linear regression models, we now transform all bulk reads to 

either GFPneg or GFPmedium populations, depending on if we are interested in 
finding gRNAs enriched in GFPneg or GFPmedium populations respectively.

Step 2. We now use the fact that since the dummy gRNA (negative control) 
should not occur in GFPneg/GFPmedium cells any reads corresponding to this 
gRNA in the GFPneg/GFPmedium population are due to random chance. Hence, 
we can obtain the null probability of observing reads in the GFPneg/GFPmedium 
population by dividing the GFPneg/GFPmedium reads for the dummy gRNA by 
the number of bulk reads for the dummy gRNA transformed to the GFPneg/
GFPmedium scale. We then use a binomial distribution to calculate significance 
for a gRNA based on this null probability, with the gRNA’s observed number 
of GFPneg/GFPmedium reads as the number of successes, and the number of 
bulk-transformed reads for the gRNA as the number of trials.

Data sets for comparison and visualization with enriched gRNA. The UCSC 
genome browser39 was used to visualize the data and create genomic view 
snapshots for regulatory regions of various genes.

Enhancer predictions. The enhancer predictions were made using the RFECS 
method27 using 6 histone modifications from ENCODE28 trained on p300 bind-
ing site data from mouse embryonic stem cells. Enhancers were separated into 
“strong” and “weak” categories based on presence of H3K27ac at levels greater than 
input. Further boundaries of enhancers were called using a Sobel edge-detection 
algorithm implemented in MATLAB. Edges were identified for an input subtracted  
RPKM (reads per kilobase per million) – normalized H3K27ac reads27 in the case of 
strong enhancers and RPKM-normalized H3K4me1 reads for weak enhancers.

DNase I hotspot. We used the DNase-seq data set previously generated30 
and called hotspots using a standard hotspot algorithm29.

TF density. The GEM algorithm31 was applied to transcription factor ChIP-
seq data sets for the following transcription factor: Nanog, Oct4, Sox2, TCF3, 
p300, CTCF, Smc1, Smad3, c-Myc, Med12, Med1, CTCF, E2F1, Esrrb, Klf4, 
n-Myc, Nr5a2, Tcfcp2l1, Stat3, Zfx.

Analysis of deep sequencing data sets. Individual scCRISPR-mediated muta-
tion by a selected gRNA was performed in a large pool of cells to create tens of 
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thousands of unique mutated genotypes at the site. We then flow cytometri-
cally sorted GFPpos and GFPmedium/neg populations and performed 150-bp 
paired-end sequencing on regions surrounding each targeted site to obtain 
genotypic data on thousands of mutated regions that did and did not induce 
loss of GFP expression (Fig. 4a). Deep-sequencing data sets were filtered for 
sequence quality by using a minimum base quality filter of 30. After stripping 
barcodes, the length of each paired-end read was 145 bp. We aligned these 145-
bp long genotypes to the reference genotype extended by 30 bp downstream 
(total of 175 bp). Alignment of sequenced reads to the reference genome was 
performed using the semi-global version of the Needleman-Wunsch algo-
rithm40 with a gap opening penalty of 8 and gap extension penalty of 4. The 
command in MATLAB used was: 

nwalign(Reference_Seq,
Genotype_seq,’alphabet’,’NT’,’gapopenn’,8,’ExtendGap’,4,’glocal’,’true’);

 

Functional motif discovery. After globally aligning and filtering reads 
for sequence quality (per base quality ≥30), mismatches, deletions and 
insertions were counted with respect to the base position in the reference.  
We observed long stretches of mutations with combinations of mismatches and 
deletions . Hence, we defined a “length of disruption” as a continuous series  
of mutations with maximum intervening matches of <5 bases. We plotted 
the left and right ends of these disruptions and observed that the majority 
of disruptions originated within the gRNA, as expected, with very few short 
mutations lying outside that could be assumed to be one or two base sequenc-
ing errors (Supplementary Figs. 10 and 14a,b). While a majority of disrup-
tions extending beyond the ends of the guide RNA were enriched for GFPneg 
(Supplementary Fig. 10a–d, yellow-red versus blue), we also observed a mixed 
population of GFPneg as well as GFPpos deletions lying within −20/+20 bp of 
the gRNA. Since we wish to assess the local effect of the gRNA on GFP-loss, 
we limited further analysis to genotypes with disruptions that originate within 
the gRNA and do not go beyond 20 bp of the gRNA.

Restricting our analysis to these genotypes, we observed increased  
mutation around the gRNA cleavage site in both GFPpos and GFPmedium/neg 
populations (Supplementary Figs. 11a,b and 13a,b). Mismatch, deletion, 
and insertion mutations were all observed, with deletions predominating 
in the GFPmedium/neg genotypes (Supplementary Figs. 11a,b versus 11c,d, 
Supplementary Figs. 13a,b versus 13c,d).

In order to develop a base-level motif logo, we defined a base-level score 
representing the deviation of GFPneg population from reference as compared 
to the deviation of the GFPpos population from reference. In order to find the 
distance of a base from reference, we used the Hellinger measure41 for finding 
the distance between two discrete distributions: 

H P Q p qi i
i

k
( , ) ,= − −( )
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Here, we had five possible values per base which were the frequency of 
occurrence of each base type (A, C, T, G) and a fifth deletion (D). The motif 
score at any base was defined as: 

base score log ( (GFP ,reference)/ (GFP ,reference))10
neg pos= H H

These base scores were plotted as a motif logo along −20/+20 bp of the 
gRNA to indicate relative importance of each base, independent of the cutting 
biases of the gRNA. It should be noted that since all mutations for GFPpos as 
well as GFPneg arise within the seed region of the gRNA, it is sometimes dif-
ficult to obtain a base-level importance score for these bases surrounding the 
cleavage site. However, due to the random lengths of stretches of mutations 
originating from the cleavage site, we can observe distinct sequence profiles 
emerging upstream and downstream of these bases.

Classification of GFPpos and GFPneg populations. We represented mis-
matches, insertions and deletions within −20/+20 bp of the gRNA as features. 
For all of the bases within the gRNA we represented 5 possibilities—A, C, T, 
G, and deletion. The feature for a base was one of four values for a particular 

base or the integer number of deleted bases starting at that base. Converting 
this categorical representation to a numeric format, we obtained 5×(length of 
gRNA + 40) features. Insertions were represented as the integer number of 
bases inserted immediately after each base of the gRNA and flanking bounda-
ries. Hence, the total features were = 6×(length of gRNA + 40).

We performed fivefold classification of unique genotypes in GFPpos and 
GFPneg populations using a parallelized random forest implemented in MATLAB.  
We used 100 trees and ascertained that the out-of-bag classification error had 
reached convergence at this parameter value. Classification rate for a test-set geno-
type, was computed in an unweighted manner by counting each test-set genotype 
only once. In case of weighted accuracy measures, we weighted the accuracy of 
classification for each test-set genotype, by the number of reads assigned to it.

Conservation of bases. We examined the vertebrate phastcons score for every base 
in the gRNA at the URE to see if there was a correspondence with the importance 
of the base for regulation as determined above (Supplementary Fig. 15e).

Off-target effect analysis. To analyze potential false positives caused by off-
target effects, we built a model of CRISPR off-target cutting using data from 
13 gRNAs that were generated by GUIDE-Seq32. We found that in inverse 
proportion to the GC-content, gRNAs could tolerate a maximum of 3–6 total 
mismatches including the PAM region, with up to 3 mismatches in the seed 
region (9–20 bp) (Supplementary Fig. 7a–d).

Using our MERA data, we defined a true negative set as gRNAs that were 
tested in all replicates but did not cause a significant loss of GFP. Based on 
the positive and negative set, we created a set of rules of the following form to 
predict off-target effects:

No adjacent pairs of mismatches in the seed region (8–20 bp) allowed.

1.  If total gRNA GC content ≤ 9: ≤3 total mismatches, ≤2 seed mismatches 
tolerated.

2.  If total gRNA GC content ≥ 10 and ≤ 13 and seed GC content ≤ 7: ≤4 
total mismatches, ≤2 seed mismatches tolerated.

3.  If total GC ≥ 10 and ≤ 13 and seed GC > 7: ≤5 total mismatches, ≤3 seed 
mismatches tolerated.

4.  If total GC ≥ 14 and ≤15: total mismatches ≤5;
If seed GC ≤7: ≤2 seed mismatches;
If seed GC>7: ≤3 seed mismatches.

5.  ≥16 GC: ≤6 total mismatches, ≤3 seed mismatches tolerated.

Our off-target effect model predicted that none of these negative set 
gRNAs had a potential off-target effect overlapping a significant genomic site 
(Supplementary Fig. 7e).

In the Tdgf1 library, 1,160/3,621 of the integrated gRNAs have potential 
off-target effects, and 150/925 of the gRNAs that were significantly enriched 
in GFPneg populations have one or two potential off-target sites within the 
topological domain containing the Tdgf1 gene as determined from mESC HiC 
data42. In the Zfp42 library, 632/1,643 integrated guide RNAs have predicted off-
target effects, and 34/332 of the gRNAs enriched in GFPneg cells have predicted 
off-target effects in the topological domain containing the Zfp42 gene.

Our off-target predictions are overly cautious, as off-target cutting is typi-
cally much rarer than on-target cutting32 and the off-target sites predicted for 
MERA hits are often >200 kb away from the gene, reducing the likelihood of 
functional association. However, even this overestimate of off-target effects 
does not alter the patterns seen in MERA data.

Experimental methods. Experimental methods are described in the 
Supplementary Methods.
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