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We mapped the transcriptional regulatory circuitry for six master regulators in human hepatocytes
using chromatin immunoprecipitation and high-resolution promoter microarrays. The results show
that these regulators form a highly interconnected core circuitry, and reveal the local regulatory
network motifs created by regulator–gene interactions. Autoregulation was a prominent theme
among these regulators. We found that hepatocyte master regulators tend to bind promoter regions
combinatorially and that the number of transcription factors bound to a promoter corresponds with
observed gene expression. Our studies reveal portions of the core circuitry of human hepatocytes.
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Introduction

The liver performs a number of complex functions essential for
life including the uptake and storage of glucose, synthesis of
bile acids, production of plasma proteins, and drug detoxifica-
tion. These functions are carried out by hepatocytes, which
comprise the bulk of the liver tissue. We and others have begun
to use genome-scale approaches to determine the transcrip-
tional regulatory circuitry of hepatocytes (Friedman et al,
2004; Odom et al, 2004; Phuc Le et al, 2005; Rubins et al, 2005;
Zhang et al, 2005). These studies have been limited because
they focused on a small number of regulators and used low-
resolution technology that explored only a subset of proximal
promoters in the mammalian genome. We mapped the pro-
moter occupancy of six master regulators in primary human
hepatocytes using chromatin immunoprecipitation (ChIPs)
combined with DNA microarrays representing large (10 kb)
portions of promoter regions for most annotated human genes.
Our results provide a high-resolution, genome-wide overview
of the core transcriptional circuitry of human hepatocytes.

Results and discussion

Identification of transcription factor binding sites

To initiate mapping of the transcriptional regulatory circuitry
of primary human hepatocytes, we selected regulators known

to be critical to hepatocyte biology based on genetic experi-
ments in mouse or human (HNF1a, HNF4a, FOXA2/HNF3b,
HNF6/ONECUT1, CREB1, and USF1) (Table I, Supplementary
Table S1) (Kuo et al, 1992; Pani et al, 1992; Cereghini 1996;
Duncan et al, 1998; Zaret 2002; Costa et al, 2003; Montminy
et al, 2004; Pajukanta et al, 2004; Lee et al, 2005). These liver-
enriched transcription factors can also play important roles in
other tissues (e.g. kidney and pancreatic islets) (Bell and
Polonsky, 2001). We then determined promoter occupancy for
these six regulators by combining ChIPs with microarrays that
have high resolution and extensive promoter coverage
(Materials and methods). We employed DNA microarrays that
contain 60-mer oligonucleotide probes covering the region
from �8 to þ 2 kb relative to the transcript start sites for
almost 18 000 annotated human genes, which were compiled
from five independent databases (Boyer et al, 2005). Most
known transcription factor binding sites occur within
–8/þ 2 kb of the transcription start site (Boyer et al 2005);
this is also true for the transcription factors studied here,
although some binding sites have been identified in other
regions (Tronche et al, 1997; Rada-Iglesias et al, 2005). The
sites occupied by transcription factors were represented by
peaks of ChIP-enriched DNA that spanned neighboring probes
(examples in Supplementary Figure S1). The coverage of
promoter regions averaged one 60 mer for each 250 bases of
sequence (Boyer et al, 2005).
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Identification of transcriptional regulatory motifs

We analyzed this high-resolution data using previously
reported methods (Lee et al, 2002) to identify transcriptional
network regulatory motifs (the simplest units of network
structure), and thus to determine how these six key hepatocyte
regulators contribute to autoregulatory loops, multicompo-
nent loops, feed-forward loops, and multi-input motifs
(Figure 1, Supplementary Table S2) (Lee et al, 2002; Milo
et al, 2002; Shen-Orr et al, 2002; Odom et al, 2004).

Several aspects of the regulatory circuitry present among
these master regulators have been noted or suggested pre-
viously. The network is highly interconnected (Figure 1A), and
combinatorial control plays an important role in directing gene
expression (Krivan and Wasserman, 2001). HNF4a and HNF1a
bound each others promoters; the FOXA2 promoter was bound
by both HNF6 and FOXA2; and the HNF4a promoter is
occupied by multiple HNF factors (Figure 1A, Supplementary
Figure S1) (Pani et al, 1992; Duncan et al, 1998; Bailly et al,
2001; Costa et al, 2003; Briancon et al, 2004; Odom et al, 2004).
Our data further showed the promoter of transthyretin, an
archetypic hepatocyte gene, is occupied by HNF1a, HNF4a,
FOXA2, and HNF6 as predicted from extensive site-specific
and sequence-based analysis (Supplementary Figure S1)
(reviewed in Costa et al, 2003).

Feed-forward loops were observed for seven combinations of
transcriptional regulators (Figure 1). FOXA2 is involved with
three separate feed-forward motifs, and potentially acts as a
master regulator via the feed-forward motif for over 180 genes.
This is consistent with previous suggestions that FOXA2 is
at the top of regulatory hierarchies within the liver as well
as other tissues (Lee et al, 2005). Single input motifs are
present for all six regulators, although it is likely that many of
the genes presently classed as single input are probably
coordinately regulated and cobound by other as-yet-unchar-
acterized factors. Multi-input motifs were present for most
combinations of transcriptional regulators (Figure 1B, Supple-
mentary Table S2).

Prevalence of autoregulation among hepatocyte
regulators

A remarkable feature of the portions of hepatocyte regulatory
circuitry we studied here is the frequency of autoregulatory
loops: five of the six regulators (83%) occupied their own
promoters (Figure 1A, Supplementary Figure S2). Consistent
with this, we use hypothesis-driven binding sequence analysis

(MacIsaac et al, 2006) to determine that optimized binding
sequences for each transcription factor, and their presence
close to each autoregulatory binding event (Supplementary
information). Most bacterial transcription factors form auto-
regulatory loops (Thieffry et al, 1998; Shen-Orr et al, 2002).
However, an analysis of nearly all yeast transcription factors
has shown that only 10% have autoregulatory loops, suggest-
ing that this form of regulation occurs much more rarely
in eukaryotes (Lee et al, 2002; Harbison et al, 2004). These
observations prompted us to consider the possibility that
autoregulatory motifs are general features of eukaryotic
transcription factors at the top of regulatory hierarchies or
that play key roles in major cellular processes. When we
inspected data for all transcription factors in yeast (Harbison
et al, 2004; Supplementary information), we found that master
regulators of key cellular processes were significantly more
likely to autoregulate than other regulators (Supplementary
Table S3 and S4, Supplementary Material). For instance, STE12
and TEC1 form autoregulatory loops: STE12 is the master
regulator of mating and TEC1 is a key regulator of pseudohy-
phal growth (Zeitlinger et al, 2003).

In mammalian cells, transcription factors that have auto-
regulatory loops are frequently considered master regulators
of tissues or key processes. These include, for example, OCT4
in embryonic stem cells (Boyer et al, 2005; Okumura-
Nakanishi et al, 2005), MyoD and MyoG in muscle (Tapscott
and Weintraub, 1991; Blais et al, 2005), FOXA2 in hepatocytes
(Pani et al, 1992; Lee et al, 2005), and PU.1 in myeloid cells
(Chen et al, 1995) (Supplementary Table S5). Importantly,
most characterized mammalian transcription factors have
been investigated because they play key roles in a particular
tissue or cellular process. However, there are transcription
factors (such as USF1) that do not occupy their own promoters
(Supplementary Table S6), indicating that autoregulation is
not simply a universal feature of mammalian transcription
factors (Bateman, 1998).

Autoregulatory motifs may be a general feature of transcrip-
tion factors that play key roles in major cellular processes
because they impart stability to regulatory networks (Becskei
and Serrano, 2000; Brandman et al, 2005). Master regulators of
hepatocytes, like those of other tissues, are known to play both
positive and negative regulatory roles (Briancon et al, 2004);
both positive and negative feedback loops allow systems to be
resistant to noise (Becskei and Serrano, 2000; Rosenfeld et al,
2002; Brandman et al, 2005). These characteristics may be
crucial for regulators that are responsible for tissue-specific
programs in higher eukaryotes.

Table I Transcriptional master regulators profiled in primary human hepatocytes

Regulator Function PFAM category Genes bound

HNF1a Metabolic control POU homeodomain 1016
HNF4a Development, metabolism Nuclear receptor 4519
HNF6 (ONECUT1) Development CUT homeodomain 1306
HNF3b (FOXA2) Development Forkhead 890
CREB1 cAMP response bZIP 2197
USF1 Glucose, lipid metabolism Basic helix–loop–helix 1632
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Statistical enrichment of multiple binding events
and correlation of promoter occupancy with gene
expression

Well-characterized liver promoters are often controlled com-
binatorially by multiple liver-enriched transcription factors
(Cereghini, 1996; Krivan and Wasserman, 2001; Costa et al,
2003; Friedman et al, 2004; Phuc Le et al, 2005; Rada-Iglesias
et al, 2005). This prompted us to inspect our genome-wide
binding data for evidence of enrichment in combinatorial

promoter occupancy. Comparison of the experimental data
against randomized binding data (randomized by assuming all
factors bind independently) revealed a statistically significant
enrichment in the number of promoters bound by two or more
transcriptional regulators. The enrichment generally increases
with the number of transcriptional regulators bound
(Figure 2A, Supplementary Figure S3). For instance, 1188
genes are bound by three or more regulators, whereas we
would expect by random chance to see 345 genes cobound by
three or more factors (z-score 45.8). Similar analyses of four,

Figure 1 (A) Transcription factor crosstalk and autoregulation in the core regulatory circuitry of human hepatocytes. Regulators are shown as black ovals, with
genomic occupancy of promoter regions indicated by blue or red (for autoregulatory loops) lines. (B) Frequency of network motifs in core hepatocyte regulatory
network. For clarity, only combinations potentially controlling 20 or more genes are shown for the two-, three-, and four-factor multi-input motifs. (See also Supplementary
Table S2).
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five, and six bound regulator combinations yield z-scores that
increase with increasing number of bound regulators
(Figure 2B). These results are consistent with previous
suggestions that liver transcriptional regulation is controlled
by multiple transcription factors acting in concert.

It might be expected that the presence of larger numbers of
liver-specific transcription factors at a promoter region would
increase the probability that the associated gene was
expressed. We tested this hypothesis by classifying genes by
the presence or absence of transcripts in the liver (Su et al,
2004), and comparing these categories with the number of
regulators bound to corresponding promoters. We found a
strong correspondence between these two values (Figure 2B),
although the statistical significance drops at higher multi-input
motifs due to small numbers of genes in the higher multi-input
motifs. This correspondence is independent of the stringency
used to call a transcript present (Supplementary Figure S4).
Nevertheless, there are transcripts expressed in the absence of
binding by these six master regulators, and there are genes
bound by multiple factors, which are not appreciably
expressed in human hepatocytes. These observations high-
light the complexity of the hepatocyte transcriptional program.

Conclusions

We have used a systematic approach to identify the set of
human promoters bound by six master regulators that are
essential for proper liver development and function. The
results show that these regulators form a highly intercon-
nected core circuitry in human hepatocytes, identify the local
regulatory network motifs created by regulator–gene interac-
tions, and reveal that autoregulation is a predominant theme
among liver-enriched transcription factors. The data support
previous predictions that these factors co-occupy many genes
to control hepatocyte gene expression, and there exists a direct
correspondence between the number of regulators bound to a
promoter region and the probability that a gene is expressed.
This initial analysis of a portion of the regulatory circuitry in
human liver should lay the foundation for future efforts to
more fully elucidate the hepatic transcriptional program.

Supplementary information

Supplementary information including Materials and Methods
is available at Molecular Systems Biology website (www.
nature.com/msb). Also supporting website at http://web.
wi.mit.edu/young/autoregulation/.
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