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Abstract. A major challenge in gene expression analysis is effective
data organization and visualization. One of the most popular tools for
this task is hierarchical clustering. Hierarchical clustering allows a user
to view relationships in scales ranging from single genes to large sets of
genes, while at the same time providing a global view of the expression
data. However, hierarchical clustering is very sensitive to noise, it usually
lacks of a method to actually identify distinct clusters, and produces a
large number of possible leaf orderings of the hierarchical clustering tree.
In this paper we propose a new hierarchical clustering algorithm which
reduces susceptibility to noise, permits up to k siblings to be directly
related, and provides a single optimal order for the resulting tree. Our
algorithm constructs a k-ary tree, where each node can have up to k
children, and then optimally orders the leaves of that tree. By combining
k clusters at each step our algorithm becomes more robust against noise.
By optimally ordering the leaves of the tree we maintain the pairwise
relationships that appear in the original method. Our k-ary construction
algorithm runs in O(ns) regardless of k and our ordering algorithm runs
in O(4FT°®p3) We present several examples that show that our k-ary
clustering algorithm achieves results that are superior to the binary tree
results.

1 Introduction

Hierarchical clustering is one of the most popular methods for clustering gene
expression data. Hierarchical clustering assembles input elements into a single
tree, and subtrees represent different clusters. Thus, using hierarchical clustering
one can analyze and visualize relationships in scales that range from large groups
(clusters) to single genes. However, hierarchical clustering is very sensitive to
noise, since in a typical implementation if two clusters (or genes) are combined
they cannot be separated even if farther evidence suggests otherwise [11]. In
addition, hierarchical clustering does not specify the clusters, making it hard to
distinguish between internal nodes that are roots of a cluster and nodes which
only hold subsets of a cluster. Finally, the ordering of the leaves, which plays an
important role in analyzing and visualizing hierarchical clustering results, is not



defined by the algorithm. Thus, for a binary tree, any one of the 27! orderings
is a possible outcome.

In this paper we propose a new hierarchical clustering algorithm which re-
duces susceptibility to noise, permits up to k siblings to be directly related, and
provides a single optimal order for the resulting tree, without sacrificing the
pairwise relationships between neighboring genes and clusters in the result. Our
solution replaces the binary tree of the hierarchical clustering algorithm with
a k-ary tree. A k-ary tree is a tree in which each internal node has at most k
children. When grouping k clusters (or genes) together, we require that all the
clusters that are grouped together will be similar to one another. It has been
shown (e.g. in CLICK [11]) that relying on similarities among large groups of
genes helps reduce the noise effects that are inherent in expression data. Our
algorithm utilizes this idea for the hierarchical case.

The number of children of each internal node is not fixed to k. Rather, k is
an upper bound on this number, and if the data suggests otherwise this number
can be reduced. An advantage of such a method is that it allows us to highlight
some of the actual clusters since nodes with less than k children represent a set
of genes that are similar, yet significantly different from the rest of the genes.
Such a distinction is not available when using a binary tree.

Finally, our algorithm re-orders the resulting tree so that an optimally or-
dered tree is presented. This ordering maximizes the sum of the similarity of
adjacent leaves in the tree, allowing us to obtain the best pairwise relationships
between genes and clusters, even when k > 2.

The running time of our tree construction algorithm (for small values of k)
is O(n?), which is similar to the running time of currently used hierarchical
clustering algorithms. In order to obtain this performance we use a heuristic
algorithm for constructing k-ary trees. Our ordering algorithm runs in O(n?®)
for binary trees, while for k& > 2 our algorithm runs in O(4*+°(*)n3) time and
O(kn?) space which is feasible even for a large n (when k is small).

The rest of the paper is organized as follows. In Section 2 we present an
algorithm for constructing k-ary trees from gene expression data. In Section 3
we present our ordering algorithm. In Section 4 we present some experimental
results, and Section 5 summarizes the paper and suggests directions for future
work.

1.1 Related work

The application of hierarchical clustering to gene expression data was first dis-
cussed by Eisen in [5]. Hierarchical clustering has become the tool of choice for
many biologists, and it has been used to both analyze and present gene ex-
pression data [5,9]. A number of different clustering algorithms, which are more
global in nature, where suggested and applied to gene expression data. Examples
of such algorithms are K-means, Self organizing maps [12] and the graph based
algorithms Click [11] and CAST [2]. These algorithms generate clusters which
are all assumed to be on the same level and thus lack the ability to represent the
relationships between genes and sub clusters as hierarchical clustering does. In



addition, they are usually less suitable for large scale visualization tasks, since
they do not generate a global ordering of the input data. In this work we try to
combine the robustness of these clustering algorithms with the presentation and
flexible groupings capabilities of hierarchical clustering.

Recently, Segal and Koller [10] suggested a probabilistic hierarchical clus-
tering algorithm, to address the robustness problem. Their algorithm assumes
a specific model for gene expression data. In contrast, our algorithm does not
assume any model for its input data, and works with any similarity/distance
measure. In addition, in this paper we present a method that allows not only to
generate the clusters but also to view the relationships between different clusters,
by optimally ordering the resulting tree.

The problem of ordering the leaves of a binary hierarchical clustering tree
dates back to 1972 [8]. Due to the large number of applications that construct
trees for analyzing datasets, over the years, many different heuristics have been
suggested for solving this problem (c.f. [8,7,5]). These heuristics either use a
"local’ method, where decisions are made based on local observations, or a ’global’
method, where an external criteria is used to order the leaves. In [1] Bar-Joseph
et al presented an O(n*) algorithm that maximizes the sum of the similarities of
adjacent elements in the orderings for binary trees. This algorithm maximizes a
global function with respect to the tree ordering, thus achieving both good local
ordering and global ordering. In this paper we extend and improve this algorithm
by constructing a time and space efficient algorithm for ordering k-ary trees.

Recently it has come to our attention that the optimal leaf ordering problem
was also addressed by Burkard et al [3]. In that paper the authors present an
O(2Fn3) time, O(2Fn?) space algorithm for optimal leaf ordering of PQ-trees.
For binary trees, their algorithm is essentially identical to the basic algorithm
we present in section 3.2, except that we propose a number of heuristic improve-
ments. Although these do not affect the asymptotic running time, we experi-
mentally observed that they reduce the running time by 50-90%. For k-trees, the
algorithms differ in their search strategies over the children of a node. Burkard
et al. suggest a dynamic programming approach which is more computationally
efficient (O(2%n?) vs. O(4FT°(F)n3)), while we propose a divide and conquer ap-
proach which is more space-efficient (O(kn?) vs. O(2¥n?)). The number of genes
(n) in a expression data set is typically very large, making the memory require-
ments very important. In our experience, the lower space requirement, despite
the price in running time, enables using larger ks.

2 Constructing K-ary Trees

In this section we present an algorithm for constructing k-ary trees. We first
formalize the k-ary tree problem, and show that finding an optimal solution
is hard (under standard complexity assumptions). Next, we present a heuristic
algorithm for constructing k-ary trees for a fixed k, and extend this algorithm
to allow for nodes with at most &k children.



2.1 Problem statement

As is the case in hierarchical clustering, we assume that we are given a gene
similarity matrix S, which is initially of dimensions n by n. Unlike binary tree
clustering, we are interested in joining together groups of size k, where k > 2. In
this paper we focus on the average linkage method, for which the problem can
be formalized as follows. Given n clusters denote by C' the set of all subsets of
n of size k. Our goal is to find a subset b € C s.t. V(b) = maz{V ()|t € C}
where V' is defined in the following way:

V)= > S6.4)

1,j€b,1<j

That is, V(b) is the sum of the pairwise similarities in b. After finding b, we
merge all the clusters in b to one cluster and compute a revised similarity matrix
in the following way. Denote by 4 a cluster which is not a part of b, and let the
cluster formed by the merging all the clusters of b be denoted by j. For a cluster
m, let |m| denote the number of genes in m, then:

Zmeb |m|S(ma Z)
Emeb ‘m‘

which is similar to the way the similarity matrix is updated in the binary case.
This process is repeated (n — 1)/(k — 1) times until we arrive at a single root
cluster, and the tree is obtained.

Finding b in each step is the most expensive part of the above problem, as
we show in the next lemma. In this lemma we use the notion of W1] hardness.
Under reasonable assumptions, a WJ1] hard problem is assumed to be fixed
parameter intractable, i.e. the dependence on k cannot be separated from the
dependence on n (see [4] for more details).

S(i,j) =

Lemma 1. Denote by MaxSim(k) the problem of finding the first b set for a
given k. Then MaxSim is NP-hard for arbitrary k, and W[1] hard in terms of
k.

proof outline: We reduce MAX-CLIQUE to MaxSim(k) by constructing a
similarity matrix S and setting Sg(i, ) = 1 iff there is an edge between i and
j in G. Since MAX-CLIQUE is NP and W[1] complete, MaxzSim(k) is NP and
W1] hard.

2.2 A heuristic algorithm for constructing k-ary trees

As shown in the previous section, any optimal solution for the k-ary tree con-
struction problem might be prohibitive even for small values of k, since n is
very large. In this section we present a heuristic algorithm, which has a running
time of O(n?) for any k, and reduces to the standard average linkage clustering
algorithm when k£ = 2. The algorithm is presented in Figure 1 and works in the
following way. Starting with a set of n clusters (initially each gene is assigned to



a different cluster), we generate a linked list of clusters for each cluster 4, ordered
by their similarity to ¢ in ascending order. For each cluster ¢ we compute V (b;)
where b; consists of ¢ and the clusters that appear in the first £ — 1 places on
L;. Next, we find b = max;{V(b;)}, merge all the clusters in b to a single cluster
denoted by p and recompute the similarity matrix. After finding b and recom-
puting S we go over each linked list and delete all the clusters that are a subset
of b from all the lists, insert p to each list and recompute b; for all clusters. In
addition, we generate a new linked list for p, and compute b,.

KTree(n,S) {
C={1...n}
for all j € C' // preprocessing step
L; = ordered linked list of genes based on similarity to j
b; = j first k — 1 genes of L;
fori=1:(n—-1)/(k—1){ // main loop
b =mazjec{V(b;)}
C=C\b
Let p = min{m € b}
for all clusters j € C
S(p.j) = D ey IS (md)
remove all clustzssl.j in b from Lj
insert p into L;
b; = j first k£ — 1 cluster of L;
c=Ccp
generate L, from all the clusters in C' and find b,

return C' // C' is a singleton which is the root of the tree

}

Fig. 1. Constructing k-trees from expression data

Note that using this algorithm, it could be that even though j and ¢ are the
most similar clusters, j and 7 will not end up in the same k group. If there is
a cluster ¢ s.t. by includes ¢ but does not include j, and if V(b)) > V(b;), it
could be that 5 and ¢ will not be in the same k cluster. This allows us to use
this algorithm to overcome noise and missing values since, even when using this
heuristic we still need a strong evidence from other clusters in order to combine
two clusters together.

The running time of this algorithm is O(n?®). Generating the L;s lists can be
done in O(n?logn), and finding b; for all genes j can be done in kn time. Thus
the preprocessing step takes O(n?logn).

For each iteration of the main loop, it takes O(n) to find b, and O(nk) to recom-
pute S. It takes O(kn? + n? + kn) to delete all the members of b from all the
Ljs, insert p into all the L;s and recompute b;. We need another O(nlogn + k)
time to generate L, and compute b,. Thus, the total running time of each iter-



ation is O(kn?). Since the main loop is iterated (n — 1)/(k 1) time, the total
running time of the main loop is O(k(n — 1)n?/(k — 1)) = O(n3) which is also
the running time of the algorithm. The running time of the above algorithm can
be improved to O(n?logn). However, since our ordering algorithm operates in
O(n?), this will not reduce the asymptotic running time of our algorithm, and
thus we left the details out.

2.3 Reducing the number of children

Using a fixed k can lead to clusters which do not have a single node associated
with them. Consider for example a dataset in which we are left with four internal
nodes after some main loop iterations. Assume k = 4 and that the input data is
composed of two real clusters, A and B such that three of the subtrees belong to
cluster A, while the fourth belongs to cluster B (see Figure 2). If k was fixed, we
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Fig. 2. In the left hand tree k is fixed at 4. This results in a cluster (A) which does not
have any internal node associated with it. On the right hand side k is at most 4. Thus,

the three subtrees that form cluster A can be grouped together and then combined
with cluster B at the root. This results in an internal node that is associated with A.

would have grouped all the subtrees together, which results in a cluster (A) that
is not associated with any internal node. However, if we allow a smaller number
of children than k we could have first grouped the three subtrees of A and later
combine them with B at the root. Note that is this case, nodes with less than k
children represent a set of genes that are similar, yet significantly different than
the rest of the genes.

We now present a permutation based test for deciding on how many clusters
to combine in each iteration of the main loop. There are two possible approaches
one can take in order to perform this task. The first is to join as many clusters
as possible (up to k) unless the data clearly suggests otherwise. The second is
to combine as few clusters as possible unless the data clearly suggests otherwise.
Since we believe that in most cases more than 2 genes are co-expressed, in this
paper we use the first approach, trying to combine as many clusters as possible
unless the data clearly suggests otherwise.

Let k = 3 and let b, = argmax;{V (b;)} where i goes over all the clusters we
currently have. Let d and e be the first and second clusters on L. respectively.
We now wish to decide weather to combine the first two clusters (¢ and d) or



combine all three clusters. Let maz. = maxz{S(c,e),S(d,e)} that is S, is the
maximal similarity between e and one of the two clusters we will combine in any
case.. In order to test the relationship between mazx,. and S(c, d), we perform the
following test. In our case, each cluster ¢ is associated with a profile (the average
expression value of the genes in ¢). Assume our dataset contains m experiments,
and let p., pg and p. be the three clusters profiles. Let p be the 3 by m matrix,
where every row of p is a profile of one of the clusters. We permute each column
of p uniformly and independently at random, and for the permuted p we compute
the best (s1) and second best (s2) similarities among its rows. We repeat this
procedure r times, and in each case test if sy is bigger than max. or smaller. If
sg > max. at least ar times (where « is a user defined value between 0 and 1) we
combine ¢ and d without e, otherwise we combine all three clusters. Note that if
c and d are significantly different from e then it is unlikely that any permutation
will yield an s that is lower than mazx., and thus the above test will cause us to
separate ¢ and d from e. If ¢ and d are identical to e, then all permutations will
yield an sy that is equal to max., causing us to merge all three clusters. As for
the values of «, if we set a to be close to 1 then unless e is very different from
c and d we will combine all three clusters. Thus, the closer « is to 1, the more
likely our algorithm is to combine all three clusters.

For k > 3 we repeat the above test for each k' = 3...k. That is, we first test
if we should separate the first two clusters from the third cluster, as described
above. If the answer is yes, we combine the first two clusters and move to the next
iteration. If the answer is no we apply the same procedure, to test weather we
should separate the first three clusters from the fourth and so on. The complexity
of these steps is rk? for each k' (since we need to compute the pairwise similarities
in each permutations), and at most rk? for the entire iteration. For a fixed r, and
k << n this permutation test does not increase the asymptotic complexity of
our algorithm. Note that if we combine m < k clusters, the number of main loop
iteration increases. However, since in this case each the iteration takes O(n?m)
the total running time remains O(n?).

3 Optimal leaf ordering

In this section we discuss how we preserve the pairwise similarity property of the
binary tree clustering in our k-ary tree algorithm. This is done by performing
optimal leaf ordering on the resulting tree. After formally defining the optimal
leaf ordering problem, we present an algorithm that optimally orders the leaves
of a binary tree in O(n?®). We discuss a few improvements to this algorithm which
further reduces its running time. Next, we extend this algorithm and show how
it can be applied to order k-ary trees.

3.1 Problem statement

First, we formalize the optimal leaf ordering problem, using the following nota-
tions. For a tree T with n leaves, denote by z1,---, z, the leaves of T' and by



V1 Up_1 the n — 1 internal nodes of T'. A linear ordering consistent with
T is defined to be an ordering of the leaves of T generated by flipping internal
nodes in T (that is, changing the order between the two subtrees rooted at v;,
for any v; € T). See Figure 3 for an example of node flipping.

izt
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Fig. 3. When flipping the two subtrees rooted at the red circled node we obtain different
orderings while maintaining the same tree structure. Since there are n—1 internal nodes
there are 2" ™! possible orderings of the tree leaves.

Since there are n — 1 internal nodes, there are 2”1 possible linear orderings
of the leaves of a binary tree. Our goal is to find an ordering of the tree leaves,
that maximizes the sum of the similarities of adjacent leaves in the ordering. This
could be stated mathematically in the following way. Denote by @ the space of
the 2”1 possible orderings of the tree leaves. For ¢ € & we define D?(T') to be:

n—1
D¢(T) = Z S(Ztﬁﬂ Z¢z‘+1)
i=1

where S(u,w) is the similarity between two leaves of the tree. Thus, our goal is
to find an ordering ¢ that maximize D?(T). For such an ordering ¢, we say that
D(T) = D*(T).

3.2 An O(n?) algorithm for binary trees

Assume that a hierarchical clustering in form of a tree 1" has been fixed. The
basic idea is to create a table M with the following meaning. For any node v of T,
and any two genes ¢ and j that are at leaves in the subtree defined by v (denoted
T(v)), define M (v,i,7) to be the cost of the best linear order of the leaves in
T'(v) that begins with i and ends with j. M (v, 1, j) is defined only if node v is the
least common ancestor of leaves i and j; otherwise no such ordering is possible.
If v is a leaf, then M(v,v,v) = 0. Otherwise, M(v,,j) can be computed as
follows, where w is the left child and z is the right child of v (see Figure 4 (a)):

M(v,i,7) = M(w,i,h) + S(h,l) + M(z,1,5). (1)

max
heT (w),leT (x)

Let F'(n) be the time needed to compute all defined entries in table (M (v,1, 7))
for a tree with n leaves. We analyze the time to compute Equation 1 as follows:
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(a) Computing M (v,i,7) for a binary tree ) K-ary tree

Fig. 4. (a) A binary tree rooted at V. (b) Computing M (v,1,j) for the subtrees order
1...k. For each possible ordering of 1...%k we can compute this quantity by adding
internal nodes and using the binary tree algorithm.

Assume that there are r leaves in T'(w) and p leaves in T'(z), +p = n. We must
first compute recursively all values in the table for T'(w) and T(z); this takes
F(r)+ F(p) time.

To compute the maximum, we compute a temporary table Temp(i,l) for all
i € T(w) and | € T(x) with the formula

Temp(i,1) = e M(w,i,h) + S(h,1); (2)

this takes O(r?p) time since there are rp entries, and we need O(r) time to
compute the maximum. Then we can compute M (v,14,75) as

M(v,i,j) = . Temp(i,1) + M(z,1, j). 3)

This takes O(rp?) time, since there are rp entries, and we need O(p) time to
compute the maximum.

Thus the total running time obeys the recursion F(n) = F(r) + F(p) +
O(r?p) + O(rp?) which can be shown easily (by induction) to be O(n?), since
4P+ rPp+rp? < (r+p)? =nd

The required memory is O(n?), since we only need to store M (v,i,5) once
per pair of leaves i and j.

For a balanced binary tree with n leaves we need 2(n3) time to compute
Equation 1; hence the algorithm has running time ©(n?).

We can further improve the running time of the algorithm in practice by
using the following techniques:

Early termination of the search. We can improve the computation time for Equa-
tion 2 (and similarly Equation 3) by pruning the search for maximum whenever
no further improvement is possible. To this end, set symax(l) = maxpep ) S(h,1).



Sort the leaves of T'(w) by decreasing value of M (w, i, h), and compute the max-
imum for Equation 2 processing leaves in this order. Note that if we find a leaf h
for which M (w, i, h) + Smax(l) is bigger than the maximum that we have found
so far, then we can terminate the computation of the maximum, since all other
leaves cannot increase it.

Top-level improvement. The second improvement concerns the computation of
Equations 2 and 3 when v is the root of the tree. Let w and = be the left and right
children of v. Unlike in the other cases, we do not need to compute M (v,1,7)
for all combinations of i € T'(w) and j € T'(x). Rather, we just need to find the
maximum of all these values My = max; ; M (v,1, j).

Define Max(v, i) = maxyep(y) M (v,14,h). From Equation 1 we have

Mpax = max  M(w,i,h) +S(h,1) + M(z,1,7) =

max X

€T (w),j€T(z) heT(w),leT(x)
= max Max(w, h) + S(h,1) + Max(z,1).
heT (w),leT(x)

Therefore we can first precompute values Max(w, h) for all h € T(w) and
Max(z,1) for all [ € T(z) in O(n?) time, and then find M.y, in O(n?) time.
This is in contrast to the O(n3) time needed for this computation normally.

While the above two improvements do not improve the theoretical running
time (and in fact, the first one increases it because of the sorting step), we found
in experiments that on real-life data this variant of the algorithm is on average
50-90% faster.

3.3 Ordering k-ary trees

For a k-ary tree, denote by vy ...v, the k subtrees of v. Assume i € v; and
J € vg, then any ordering of vy ... v,_o is a possibility we should examine. For a
specified ordering of the subtrees of v, M(v,i,7) can be computed in the same
way we computed M for binary trees by inserting k — 2 internal nodes that agree
with this order (see figure 4 (b)).

Thus, we first compute M (v1,2, h, 1) for all h and [ leaves of v; and v,. Next
we compute M (v 23, *,%) and so on until we compute M (v, 1, ) for this order.
This results in the optimal ordering of the leaves when the subtrees order is
v1...Vg. Since there are k! possible ordering of the subtrees, going over all k!
orderings of the subtrees in the manner described above gives rise to a simple
algorithm for finding the optimal leaf ordering of a k-ary tree. Denote by p; ... pg
the number of leaves in v ... vy respectfully. Denote by © the set of k! possible
orderings of 1...k. The running time of this algorithm is O(k!n?3) as can be seen
using induction from the following recursion:

k—1 7 7
F(n) = Z Fpi)+ > ) 1 O po) oy + O Po))Paisn

pco i=1 \ j=1 j=1
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=kl(pr +p2+ .. .pk)g = kIn3

Where the inequality uses the induction hypothesis. As for space complexity, for
two leaves, i € vy and j € vy, we need to store M (v, 4, j). In addition, it might be
that for two other leaves m € vo and [ € vi_1 7 and j are two boundary leaves in
the internal ordering of the subtrees of v, and thus we need to store the distance
between them for this case as well. The total number of subdistances we need to
store for each pair is at most k& — 2, since there are only k& — 2 subtrees between
the two leftmost and rightmost nodes, and thus by deleting all subpaths which
we do not use we only need O(kn?) memory for this algorithm.

Though O(k!n?) is a feasible running time for small ks, we can improve upon
this algorithm using the following observation. If we partition the subtrees of
v into two groups, v’ and v”, then we can compute M (v) for this partition
(i.e. when the subtrees of v’ are on the right side and the subtrees of v on
the left) by first computing the optimal ordering on v’ and v" separately, and
then combining the result in the same way discussed in Section 3.2. This gives
rise to the following divide and conquer algorithm. Assume k = 2™, recursively
compute the optimal ordering for all the ( k];Q) possible partitions of the subtrees
of v to two groups of equal size, and merge them to find the optimal ordering
of v. In order to compute the running time of this algorithm we introduce the
following notations: We denote by I'(v) the set of all the possible partitions of
the subtrees of v to two subsets of equal size. For v € I'(v) let v, (1) and vy (2
be the two subsets and let p,(;) and p,(2) be the number of leaves in each of
these subsets. The running time of this algorithm can be computed by solving
the following recursion:

k

F(n)=F(p1 +p2-..+pr) :ZF(Pi)+D(”)
i1

Where

D(v) = Z p»zy(l)pv@) +pv(1)pf2y(2) + D(vy (1)) + D(vy(2))
v€T(v)

and D(i) = 01if ¢ is a singleton containing only one subtree. The following lemma
discusses the maximal running time of the divide and conquer approach.

Lemma 2. Assume k = 2™ then

k

D) < =T (53
TILey =T =Y

Proof. By induction on m.
For m = 1 we have £k = 2 and we have already shown in Section 3.2 how
to construct an algorithm that achieves this running time for binary trees. So

D(v) = pip2 + pip3 < 2(p1 +p2)® — pi — p3.



Assume correctness for m — 1. Let k = 2. Then for every v € I'(v) we have
DL P2 T PvmPia) + D(vym) + D(vyz) <

m—1
2 2 (2 )! 3 3
Py(1)Pr(2) T Py()Py2) T 2 : ,( E : pj)’ — E pj +

Hi:o (29! Jjev(1) jev(l)
@™ Cemhr S
1=0 ’ je’y(Z) J€Y(2) Jj=1

The first inequality comes from the induction hypothesis, and the second in-

equality arises from the fact that (1) does not intersect v(2) and v(1) J~(2) =
. _ k B (27n | .

{1...k}. Since |[I'(v)| = (k:/2) = @=hgm=Ty; summing up on all v € I" proves

the lemma.

It is now easy to see (by using a simple induction proof, as we did for the binary
case) that the total running time of this algorithm is: O(ﬁrﬁ) which is
=0
faster than the direct extension discussed above. If 2™ < k < 2™*! then the
same algorithm can be used by dividing the subtrees of v to two groups of size
2™ and k — 2™. A similar analysis shows that in this case the running time is
O(Wﬂz)’), which (using the Sterling approximation) is O(4FT°(*)p3).

!
i=0 )!

4 Experimental results

In this section we compare the binary and k-ary clustering using synthetic and
real datasets, and show that in all cases we looked at we only gain from using
the k-ary clustering algorithm.

We report results that where generated with k = 4. We found that the re-
sults do not change much when using higher values of k. Due to the fact that
the running time increases as a function of k, we concentrate on k = 4.

Generated data: To test the effect of k-ary clustering and ordering on the
presentation of the data, we generated a structured input data set. This set
represents 30 temporally related genes, each one with 30 time points. In order
to reduce the effect of pairwise relationships, we chose 6 of these genes, and
manually removed for each of them 6 time points, making these time points
missing values. Next we permuted the genes, and clustered the resulting dataset
with the three methods discussed above. The results are presented in Figure 5.
As can be seen, using optimal leaf ordering (o.l.0.) with binary hierarchical
clustering improved the presentation of the dataset, however o.l.o. was unable
to overcome missing values, and combined pairs of genes which where similar
due to the missing values, but where not otherwise similar to a larger set of
genes. Using the more robust k-ary tree algorithm, we where able to overcome
the missing values problem. This resulted in the correct structure as can be seen
in Figure 5. Note that by simply fusing together binary tree internal nodes one



cannot arrive at the correct order achieved by the 4-ary algorithm. The correct
order only arises from the fact that we allow the algorithm to combine 4 leaves
simultaneously.

Hierarchical clustering Binary clustering with o.l.o. 4-tree clustering with o.l.o.

Fig. 5. Color comparison between the three different clustering methods on a manually
generated dataset. Green corresponds to decrease in value (-1) and red to increase (1).
Gray represents missing values.

Visualizing Biological datasets: In [9] the authors looked at the chicken im-
mune system during normal embryonic B-cell development and in response to
the overexpression of the myc gene. This dataset consists of 13 samples of trans-
formed bursal follicle (TF) and metastatic tumors (MT). These samples where
organized in decreasing order based on the myc overexpression in each of them.
800 genes showing 3 fold change where clustered using Eisen’s Cluster [5], and
based on manual inspection, 5 different clusters where identified. The 5 clusters
where separated into two groups. The first contains four of the clusters (A,B,E
and D) which (in this order) contain genes that are decreasingly sensitive to myc
overexpression. The second is the cluster C which contains genes that are not
correlated with myc overexpression. We compared the results of the three clus-
tering algorithms for this dataset (results not shown, see web supplmment at:
http://psrg.les.mit.edu/ zivbj/WABI02/chick.html). We found that when using
the k-ary clustering algorithm these clusters were displayed in their correct or-
der. Furthermore, each cluster is organized (from bottom to top) based on the
required level of myc overexpression. This allows for an easier inspection and
analysis of the data. On the other hand, using binary tree clustering with o.l.o.
does not yield the same result and the A and E clusters were broken into two
parts. In addition, from looking at the 4-ary tree our algorithm generated we
observed that some of its internal nodes that contain less than 4 children corre-
spond to clusters that where identified in the original paper. Had we used a fixed
k = 4, these clusters might not have had a single node associated with them.

Clustering Biological datasets: The second biological dataset we looked at
is a collection of 79 expression experiments that where performed under differ-



Complex # genes binary tree 4-ary tree

#€ com-|cluster |ratio|#€ com-|cluster |ratio

plex size plex size
Cytoskeleton 48 48 979 .05 |27 438 .06
Intracellular 72 49 644 .08 |44 541 .08
Proteasome 35 28 28 1 28 28 1
Replication 48 36 236 15 |31 235 13
Respiration chain|31 16 111 14 |26 32 .81
RNA processing [107 74 644 12 (107 979 11
Translation 208 105 106 99 111 111 1
Transcription 156 156 979 .16 |87 438 .20

Table 1. Comparison between the binary tree and 4-ary clustering algorithms using
the MIPS complexes database. See text for complete details and analysis.

ent conditions, from [5]. In order to compare our k-ary clustering to the binary
clustering we used the MIPS complexes categories

(from http://www.mips.biochem.mpg.de). We focused on the 979 genes that ap-
peared in both the dataset and the MIPS database. For each complex family, and
each clustering algorithm (binary and 4-ary), we determined the cluster (internal
node in the tree) that holds at least half of the genes in that family, and has
the highest ratio of genes from that family to the total number of genes in that
cluster. We report the results for the 8 families having more than 30 genes in
Table 4. For three families (Proteasome, Respiration chain, and Translation) our
4-ary tree contains clusters in which these families are significantly overrepre-
sented. The binary tree does not contain a significant cluster for the Respiration
chain complex. In addition, for the Translation complex our 4-ary tree contains
a cluster in which all 111 genes belong to this family, while the binary tree con-
tains a cluster with less genes (106) out of which one gene does not belong to the
Translation complex. These results indicate that our k-ary clustering algorithm
is helpful when compared to the binary hierarchical clustering algorithm, and
that it does not generate a tree which simply fuses binary tree nodes. Note that
for some of the families both the binary and 4-ary algorithms do not contain
an internal node that is significantly associated with the complex. This is not
surprising since we have only used the top level categorization of MIPS, and
thus some of the complexes should not cluster together. However, those that do,
cluster better when using the 4-ary algorithm.

5 Summary and future work

We have presented an algorithm for generating k-ary clusters, and ordering the
leaves of these clusters so that the pairwise relationships are preserved despite
the increase in the number of childrens. Our k-ary clustering algorithm runs in
O(n?) and our ordering algorithm has a running time of O(4F+°(*)n3) which is
on the order of O(n?) for a constant k. We presented several examples in which



the results of our algorithm are superior to the results obtained using binary
tree clustering, both with and without ordering.

An interesting open problem is if we can further improve the asymptotic
running time of the optimal leaf ordering algorithm. A trivial lower bound for
this problem is n? which leaves a gap of order n between the lower bound and
the algorithm presented in this paper. Note that hierarchical clustering can be
performed in O(n?) (see [6]), thus reducing the running time of the o.l.0. solution
would be useful in practice as well.

Acknowledgments

We thank Therese Biedl, Brona Brejova and Tom&s Vinai who made important
contributions to Section 3.2. Z.B.J was supported by the Program in Mathemat-
ics and Molecular Biology at the Florida State University with funding from the
Burroughs Wellcome Fund. A.M.H. was supported by the Leverhulme founda-
tion, UK and NSERC.

References

1. Z. Bar-Joseph, D. Gifford, and T. Jaakkola. Fast optimal leaf ordering for hierar-
chical clustering. In ISMB01, 2001.

2. A. Ben-Dor, R. Shamir, and Z. Yakhini. Clustering gene expression patterns.
Journal of Computational Biology, 6:281-297, 1999.

3. R. E. Burkard, Deineko V. G., and G. J. Woeginger. The travelling salesman and
the pg-tree. Mathematics of Operations Research, 24:262—-272, 1999.

4. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, New-York,
NY, 1999.

5. M.B. Eisen, P.T. Spellman, P.O. Brown, and D. Botstein. Cluster analysis and
display of genome-wide expression patterns. PNAS, 95:14863-14868, 1998.

6. D. Eppstein. Fast hierarchical clustering and other applications of dynamic closest
pairs. In Proceedings of the 9th ACM-SIAM Symp. on Discrete Algorithms, pages
619-628, 1998.

7. N. Gale, W. C. Halperin, and C.M. Costanzo. Unclassed matrix shading and
optimal ordering in hierarchical cluster analysis. Journal of Classification, 1:75—
92, 1984.

8. G. Gruvaeus and H. Wainer. Two additions to hierarchical cluster analysis. British
Journal of Mathematical and Statistical Psychology, 25:200-206, 1972.

9. P.E. Neiman and et al. Analysis of gene expression during myc oncogene-induced
lymphomagenesis in the bursa of fabricius. PNAS, 98:6378-6383, 2001.

10. E. Segal and D. Koller. Probabilistic hierarchical clustering for biological data. In
Recomb02, 2002.

11. R. Sharan, R. Elkon, and R. Shamir. Cluster analysis and its applications to
gene expression data. FErnst Schering workshop on Bioinformatics and Genome
Analysis, 2001.

12. P. Tamayo and et al. Interpreting patterns of gene expression with self organizing
maps: Methods and applications to hematopoietic differentiation. PNAS, 96:2907—
2912, 1999.



