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Abstract:

We demonstrate how graphical models, and Bayesian networks in particular,
can be used to model genetic regulatory networks. These models can be
scored in a principled manner in the presence of genomic expression data.
These methods are well-suited to this problem owing to their ability to
model more than pair-wise relationships between variables, their ability to
guard against over-fitting, and their robustness in the face of noisy data.
We develop methods for extending the semantics of these Bayesian networks
to include edge annotations that allow us to model statistical dependencies
between biological factors with greater refinement. We derive principled
methods for scoring these annotated Bayesian networks. We apply our
scoring framework to validate models of regulatory networks in comparison
with one another. To demonstrate the utility of this framework for the
elucidation of genetic regulatory networks, we apply these methods in the
context of the Saccharomyces cerevisiae galactose regulatory system.
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1 Introduction

Genes are blueprints for proteins, the molecular workhorses with roles in cel-
lular structure, motility, metabolism, homeostasis, signaling, signal transduc-
tion, reproduction, and repair. One of the most intriguing roles for proteins,
however, is that of genetic regulation: control of precisely which genes are
translated into proteins at any given time in the cell. Through these genetic
regulatory mechanisms, proteins are responsible for controlling their own ex-
istence, and yet very little is known about the sets of signals and controls
that activate and repress the expression of specific genes. In this paper, we
present a principled, hypothesis-driven method for elucidating these genetic
regulatory networks using graphical models and genomic expression data. We
discuss the suitability of this approach, as well as its limitations, and demon-
strate its application in the context of the galactose system in yeast.

2 Background

While the reductionist approach to biology has proven immensely effective
over the course of the last century, and the latter half of the last century in
particular, our efforts are increasingly focusing on more integrated approaches
to understanding complex biological systems. The success of high-throughput
genome sequencing efforts (most notably the Human Genome Project) and
an exponentially-expanding quantity of genomic expression data present a



significant opportunity to use integrated computational methods to transform
our understanding of the cellular processes governing life. Our ability to
observe and measure the responses of different cells to diverse treatments will
have a profound impact on the understanding of cell biology, the diagnosis
and treatment of disease, and the efficacy of designing and delivering targeted
therapeutics. The long term promise is that some day we might be able to
find a cure for diseases like Alzheimer’s, cystic fibrosis, or cancer.

2.1 Gathering genomic expression data

A number of technologies exist for gathering data characterizing the levels of
gene expression of cells on a genome-wide scale. The most prominent such
methods are array-based, but other methods such as SAGE (Serial Analysis
of Gene Expression) and RT-PCR (Reverse Transcriptase Polymerase Chain
Reaction) are used in certain contexts. In this paper, we consider genomic ex-
pression data gathered using Affymetrix GeneChips, which are high-density
oligonucleotide arrays printed using a lithographic masking process. Gene-
Chip arrays consist of tens of thousands of features, each containing a unique
set of short DNA strands that act as probes for binding specific target nucleic
acid molecules. To quantify the genome-wide levels of gene expression for a
population of cells, mRNA transcriptsa are extracted from the cells, labeled
with fluorescent tags, and hybridized to arrays containing features designed
to collectively probe for all the various genes in the genome.

2.2 Data-driven analysis of genomic expression data

The first forays into analysis of genomic expression data can be characterized
as primarily data-driven, in the sense that they have focused on the discovery
of patterns within the observed data itself. Within this analysis paradigm,
data gathered from expression arrays is first preprocessed to make it com-
parable with other such data, and then the resultant data matrix (genes ×
experiments) is mined for interesting patterns. Common methodologies for
data analysis include smoothing data, extracting trends from data, correlat-
ing data vectors, clustering data, ordering clustered data, labeling clustered
data, categorizing data, and representing suitably analyzed data in sugges-
tive visual forms. Extensions to this basic idea include identifying common
cis-acting sequence motifs within clusters and correlating lagged data vectors
from time-series data.

amRNA (messenger RNA) transcript molecules serve as physical intermediaries between
genes and proteins.



Figure 1. Comparison of two different paradigms for the analysis of genomic expression
data. The essential difference is that in the prevailing data-driven analysis paradigm de-
picted on the left, the results are the data (clustered, ordered, summarized, and visualized
for the user in suggestive ways). In the proposed model-driven analysis paradigm depicted
on the right, the results are numeric scores that provide a direct measure for comparing
the posterior likelihood of the models in the presence of the observed data.

This paradigm has proven quite successful in identifying a number of
striking patterns within gene expression data. For example, various genes of
similar function often cluster together, especially when the topological clusters
are optimally ordered,1 certain genes from cell-cycle synchronized cells are
noted to behave cyclically with periodicity related to the underlying period
of the cell-cycle, and various genes have been identified that seem to offer
predictive power in terms of categorizing types of cancers, and even subtypes
of cancers based not only on morphology but on other phenotypic variables
like mortality or response to treatment.2

Unfortunately, these data-driven techniques for analyzing genomic expres-
sion data generally do not permit the rigorous statistical testing of hypothe-
ses about the structure of the complex regulatory networks responsible for
transcriptional control. Moreover, although we know that cells regulate tran-
scription through combinatorial multi-variate control processes, most of these
methods rely on pair-wise measures such as correlation, Euclidean distance,
or (pair-wise) mutual information to calculate gene expression similarity.

2.3 Model-driven analysis of genomic expression data

These methodologies have been useful in uncovering interesting patterns or
regularities in the expression data that need to be explained. To explain
these patterns, we would like to be able to postulate models describing the



underlying biological mechanisms that give rise to them and then score these
models in order to determine which are most consistent with the observed
data. We therefore propose a model-driven framework for the analysis of
gene expression data in which we represent hypotheses about the function of
underlying genetic regulatory networks in a compact probabilistic form and
develop principled methods for scoring these hypotheses in comparison with
one another in terms of their relative ability to explain noisy expression data.

There are a number of possible modeling frameworks that we might con-
sider. At one end of the spectrum are highly specified models such as those
based on differential equations or stochastic Petri nets. These kinds of models
seek to explain observed expression levels by capturing the very small-scale
molecular dynamics of fundamental reactions taking place within the cell, in
some cases simulating not only the temporal evolution of molecular concen-
trations and reactions, but also the spatial aspect of these phenomena as well.
The difficulty with using such a model for this task is that it is usually so
highly specified that it requires not only an exact knowledge of which factors
interact with which other ones, which is precisely what we do not know, but
also the reaction rates associated with such interactions, in terms of bind-
ing affinities, free energies, dissociation rates, equilibrium constants, and the
like. While models at this level of specification represent the Holy Grail of
our ability to understand what is happening in the cell, with the exception of
certain special cases, they are unattainable at this juncture because so little
is currently known about which factors in the cell interact with which other
factors, let alone the frequencies and rates at which such interactions occur.
In contrast, we need models that are more abstracted than these, capable
of capturing the kernel phenomena without requiring a burdensome level of
specification.

At the other end of the modeling spectrum are highly abstracted models.
If the semantics associated with these models are so highly abstracted that
they lose the ability to represent core regulatory phenomena, however, then we
can make similarly little progress. One example of such an overly abstracted
model might be a Boolean network model. In a Boolean network model, all
factors in the genetic regulatory network are represented by Boolean variables,
which can only take on two possible values. Moreover, in a Boolean network
all relationships between variables are required to be logical, which allows little
room for explaining levels of gene expression that have become corrupted by
noise during the measurement process or are not the result of clean and logical
regulatory processes but rather ones that are inherently stochastic.

Between these two extreme ends of the modeling spectrum lie a family
of models known as graphical models, a family of flexible and interpretable



models for compactly representing probabilistic relationships among variables
of interest in the form of a graph. While this family of models is fairly large
and includes a number of possibly relevant classes of models, we concentrate
here on a particular class of models known as Bayesian networks. In our
modeling framework, Bayesian networks are used to describe relationships
between variables in a genetic regulatory network.

Bayesian networks can describe arbitrary combinatorial control of gene
expression and thus are not limited to pair-wise or linear interactions between
genes. Due to their probabilistic nature, Bayesian networks are robust in
the face of both noisy expression data and imperfectly specified hypotheses
about the function of genetic regulatory networks. Moreover, Bayesian net-
works cleanly handle missing data and permit latent variables to represent
unobserved factors, and when we extend the semantics of Bayesian networks
to allow edge annotations (as described in Section 6), Bayesian networks can
specify relationships between variables at varying levels of refinement. Most
importantly, models of genetic regulatory networks that are based on Bayesian
networks are biologically interpretable and can be scored rigorously against
observed genomic expression data.

In contrast to models employing differential equations to simulate the
molecular dynamics of interactions between factors in the cell, determining
the precise dynamics of genetic regulation is outside the scope of the Bayesian
network techniques we present here. Rather, we seek to develop comprehen-
sive high-level models that are able to suggest which factors in the cell are
interacting with which others. This information could be used as the basis
for constructing more highly specified, low-level models based on differential
equations in the future.

We should mention that our work on Bayesian networks for modeling
genetic regulatory networks was developed concurrently with similar work by
Friedman, et al.3 and Murphy and Mian.4 While their research concentrates
on different aspects of this domain, all three bodies of work taken together
represent a fairly comprehensive treatment of this topic in published literature
to date.

3 Using Bayesian networks to model genetic regulatory

networks

Variables in a Bayesian network can be either discrete or continuous, and
can represent mRNA concentrations, protein concentrations, protein modi-
fications or complexes, metabolites or other small molecules, experimental
conditions, genotypic information, or conclusions such as diagnosis or prog-



nosis. A variable that describes an observed value is called an information
variable, while a variable that describes an unobserved value is called a latent
variable.

A Bayesian network describes the relationships between variables at both
a qualitative and a quantitative level. At a qualitative level, the relation-
ships between variables are simply dependence and conditional independence.
These relationships are encoded in the structure of a directed graph, S, to
achieve a compact and interpretable representation. Vertices of the graph
correspond to variables, and directed edges between vertices represent depen-
dencies between variables. The fewer edges a model has, the more constrained
is the model since it makes more independence assertions. In practice, we seek
sparse models because they are able to explain away certain “indirect” de-
pendencies through more “direct” dependencies mediated by other variables.
Formally, if vertices X and Y are d-separated by a set of vertices Z, then
X and Y are conditionally independent given Z. In particular, if there is a
directed edge from X to Y , then Y is dependent on X . Since Y can have
multiple incoming directed edges, it can depend combinatorially on multiple
variables. We call variables that have a directed edge to Y the parents of Y ,
denoted Pa(Y ).

At a quantitative level, relationships between variables are described by
a family of joint probability distributions that are consistent with the inde-
pendence assertions embedded in the graph. Each member of this family is
described by the vector, θ, of parameters that characterize it. As this method
is Bayesian in nature, we do not consider only a single value for θ, but rather
a distribution over all possible values of θ that are consistent with the struc-
ture of the graph, S. This distribution over distributions enables these models
to avoid over-fitting, a common problem when parameters are restricted to a
single value in the context of small quantities of data.

In a Bayesian network, each joint probability distribution over the space
of variables can be factored into a product over the variables, where each term
is simply the probability distribution for that variable conditioned on the set
of parent variables:

P(X1, . . . , Xn) =

n∏
i=1

P(Xi | Pa(Xi)) (1)

This follows from the conditional Markov assumption which states that each
variable is independent of its non-descendants when conditioned on its parents.
The parameters that characterize the conditional probability distributions on
the right hand side of Equation 1 therefore comprise the parameter vector, θ.

Although we only discuss static models of regulatory networks in this



paper, Bayesian networks can also be used to model dynamic processes such as
feedback. This is accomplished by “unrolling” a static model, creating a series
of connected models that contain dependencies spanning across time steps.5 In
a modeling context, dynamic Bayesian networks smoothly interpolate between
static graphical models and differential equation models.

While continuous variables are permitted, for the remainder of this paper
we consider only discrete variables to simplify the exposition. Each variable
is thus in one of a set of states, and the number of states used to model a
variable represents a trade-off between precision, the ability to intuit what the
state of the variable means, and the computational complexity of evaluating
a model with a given number of states.

4 Scoring network models with the Bayesian scoring metric

When scoring Bayesian networks against observational data, we employ the
Bayesian scoring metric, a principled statistical scoring metric that allows
us to directly compare the merits of alternative models of genetic regulatory
networks.b The model scores produced by the Bayesian scoring metric permit
us to rank alternative models based on their ability to explain observed data
economically. Moreover, the difference between the scores for any two models
leads to a direct significance measure for determining how strongly one should
be preferred over the other.

According to the Bayesian scoring metric, the score of a model is defined as
the logarithm of the probability of the model being correct given the observed
data. Formally,

BayesianScore(S) = log p(S |D) (2)

= log p(S) + log p(D | S) + c (3)

bDue to space limitations, we present here only the basic intuition behind the Bayesian
scoring metric; more detailed quantitative treatments are available elsewhere.6 We note
that the entire discussion is equally valid in the case of dynamic Bayesian networks.



where the first term is the log prior distribution of S, the second term is the
log likelihood of the observed data D given S, and c is a constant that does
not depend on S. The likelihood term can be expanded as follows:

p(D | S) =

∫
· · ·

∫

θ

ρ(D, θ | S) dθ (4)

=

∫
· · ·

∫

θ

p(D | θ, S)ρ(θ | S) dθ (5)

From this last expression, we see that the likelihood component of a model’s
score can be viewed as the average probability of generating the observed data
over all possible values of the parameter vector, θ.

Because the Bayesian scoring metric includes an average over a family
of probability distributions, it is well suited to our context for a number of
reasons. First, it includes an inherent penalty for model complexity, thereby
balancing a model’s ability to explain observed data with its ability to do
so economically. Consequently, it guards against over-fitting models to data.
Second, regulatory network models are permitted to be incomplete. An in-
complete model contains additional degrees of freedom pertaining to the pos-
sible ways of completing the model, and is thus penalized by the scoring
metric for these additional degrees of freedom. Scores improve as a model
converges to properly depict underlying regulatory mechanisms without ex-
traneous degrees of freedom, thereby allowing network elucidation to proceed
incrementally. Third, it allows us to represent uncertainty about the precise
dependencies between variables since we need not select a single value for θ,
but rather can permit all feasible values to exist in the distribution over θ.

We have mentioned the ability to represent as Bayesian networks models
that contain variables that are unobserved or for whom data is occasionally
missing. The difficulty with these latent variable models is that the integrals
computed as part of the Bayesian scoring metric can no longer be solved ex-
actly once we are faced with incomplete data. One way to score models with
latent variables is to instantiate the latent variables by sampling from the
distribution of possible values for each such variable (e.g., MCMC methods).
Though this is feasible for small networks, it becomes computationally pro-
hibitive as networks become very large. In such settings, variational approx-
imation methods7 can be used, either on their own or in conjunction with
sampling. In addition, variational methods can also yield upper and lower
bounds on the score, often enabling the highest scoring graph to be identified
without resorting to sampling. For reasons of computational simplicity, we
consider in this paper only models with variables for which we have complete



data. The extension to the context of incomplete data, while computationally
burdensome, is fairly straightforward.

4.1 Prior establishment

In a Bayesian setting, we need to establish prior distributions both over the
set of parameter vectors, θ, that describe the joint probability distribution,
and over the set of model structures, S. In a discrete Bayesian network
satisfying the reasonable assumptions of parameter modularity, parameter
independence, and likelihood equivalence, Heckerman, et al.6 have shown that
the parameters of a discrete Bayesian network are distributed according to a
Dirichlet distribution. If there is prior information about parameters, this
information can be captured in the form of an equivalent prior network with
Dirichlet distributed parameters.6 However, if there is no prior information
about parameters, an uninformative prior is frequently employed. In both
cases, an equivalent sample size needs to be specified. This value is a measure
of how confident we are in the prior relative to the quantity of data.

With respect to the prior distribution over graph structures, this is usually
done uniformly over structures for computational convenience, though other
alternatives can be consideredc.

5 Example: scoring models of the galactose system

As a demonstration of the utility of Bayesian networks for modeling genetic
regulatory networks, we analyze and score models of the regulatory network
responsible for the control of genes necessary for galactose metabolism in
S. cerevisiae. As this is a fairly well-understood model system in yeast, it
affords us the opportunity to evaluate our methodology in a setting where we
can rely on accepted fact. We are also utilizing our Bayesian network method-
ology to explore other systems that are less well-understood like pheromone
response and cell-cycle control in yeast, but do not present those results here.

5.1 Data preparation

A set of 52 samples of unsynchronized Saccharomyces cerevisiae populations
were observed under a diversity of experimental conditions. The set of sam-

cFor example, we might consider simple nonuniform priors over structures based on either
the number of edges present or their degree of divergence from some pre-specified prior
structure. Nonuniform priors over structures can also arise from choices based on compu-
tational convenience if we are examining the space of model equivalence classes (PDAGs)
or vertex orderings rather than the space of model structures.



ples ranges widely but consists primarily of observations of various wild-type
and mutant S. cerevisiae strains made under a variety of environmental con-
ditions including exposure to different nutritive media as well as exposure
to stresses like oxidative species, excessive acidity, and excessive alkalinity.
Whole-genome expression data for each of these 52 observations was collected
using Affymetrix Ye6100 GeneChips. These GeneChips are manufactured us-
ing a 50-micron process and require four chips to measure the expression of
all 6135 genes in the S. cerevisiae genome.

5.2 Data normalization and discretization

The reported average difference values from these 208 Affymetrix GeneChips
were normalized using MAP spiked-control normalization methods.8 The out-
put of this process was a 6135×52 matrix of normalized log expression values,
one row for each gene in the yeast genome and one column for each exper-
imental observation. From this matrix, we extracted rows for each of the
genes of interest (described below) and performed binary discretization in-
dependently for each gene using a maximum-likelihood separation technique.
Other sensible discretization methods could also have been employed; for the
particular data set and models in our example, results do not depend on
the discretization method and are robust among various different sensible
methods. In general, however, the discretization method employed will affect
reported scores, and we continue to develop discretization methods that are
well suited for expression array data.d

5.3 Model preparation

Examples of genetic regulatory networks represented as Bayesian networks
are shown in Figure 2. Boxed variables suffixed with “m” describe mRNA
levels that can be determined from expression array data. Unboxed variables
suffixed with “p” describe protein levels; in this model they would be latent
variables whose values cannot be measured directly. The two networks in the
figure represent two competing models of a portion of the galactose system
in yeast, and differ in terms of the dependence relationships they assert hold
between the variables Gal80p, Gal4m, and Gal4p. To quote from Johnston,
“it was originally proposed that Gal80 protein is a repressor of GAL4 tran-
scription. It is now clear that GAL4 is expressed constitutively and that its

dBayesian networks are capable of modeling continuous variables using parametric or semi-
parametric density estimation, but discretization is more robust in a setting such as this
one where only a small number of observations is available.



Figure 2. Representative Bayesian networks for describing a portion of the galactose sys-
tem in yeast. The model M1 on the left represents the claim that Gal80p represses the
transcription of Gal4m, while the model M2 on the right represents the claim that Gal80p
inhibits Gal4p activity posttranslationally.

Figure 3. Simplified Bayesian networks for describing a portion of the galactose system
in yeast. These simplified versions of M1 and M2 capture the kernel of the conditional
independence assertions of the more complex models of Figure 2. As above, in M1, Gal2m
is independent of Gal80m when conditioned on Gal4m, and in M2, Gal4m is marginally
independent of Gal80m.

activity is inhibited by Gal80 protein posttranslationally.” 9 The network on
the left (M1) represents the original proposition, while the network on the
right (M2) represents the new assertion. The models in Figure 3 represent
the same conditional independence assertions of the models in Figure 2, but
are simplified to reveal the kernel of the distinction between the two hypothe-
ses in terms of the effects on the observed transcript levels, namely that in
M1, Gal2m is independent of Gal80m when conditioned on Gal4m, while in
M2, Gal4m is marginally independent of Gal80m.



Figure 4. Scores for all model equivalence classes of the three variable galactose system.
The classes of models that score poorly are shown shaded. The previously considered models
M1, M2, and (M1 or M2) are indicated.

5.4 Model validation and comparison

Using the Bayesian scoring metric, we are able to compare the two models
shown in Figure 3 in terms of their relative likelihood of explaining the ob-
served (now discretized) data. The model M1 received a score of -44.0, while
the model M2 received a score of -34.5. This score difference translates to
the data being over 13,000 times more likely to be observed under M2, the
currently accepted model. For extra measure, we also scored a more complex
model (M1 or M2) that would admit either of the two models as special cases.
The data do not persuade us to accept such a model since the score (-35.4) is
lower than that of the currently accepted model.

We then broadened our scope to consider not only these three models,
but all possible models among these three variables.e Results of this analysis
are shown in Figure 4. As is evident from the figure, the models fall into two
primary groupings based on their score: those scoring between -34.1 and -35.4
(unshaded) which all include an edge between Gal80m and Gal2m, and those
scoring between -42.2 and -44.0 (shaded) which all do not include an edge

eNote that some model possibilities are equivalent to others in that they describe the same
set of conditional independencies; more accurately then, we consider all possible model
equivalence classes.



between Gal80m and Gal2m. This lends support to the claim that Gal80m
and Gal2m are very unlikely to be conditionally independent given Gal4m,
again consistent with the currently accepted hypothesis.

It is interesting to note that the best scoring model in Figure 4 actually
has no edge from Gal4m to Gal2m, indicating that there is little evidence
in the data set for requiring this edge to be present. This is consistent with
the fact that under normal conditions, Gal4m is constitutively expressed and
its influence on Gal2m is usually regulated by the action of Gal80 protein,
as hypothesis M2 indicates. If the data set instead contained experiments
with GAL4 deletion mutants in which the absence of Gal4m resulted in a loss
of Gal2m expression, there would be strong support for the inclusion of this
edge. We discuss these subtleties at the end of this paper.

6 Representing and scoring network models with annotated

edges

Biologists use many specialized terms to describe the actions and interactions
of factors within the cell. Each of these terms implies a specific kind of
relationship between the factors involved in the interaction, a relationship
that is specified at a finer degree of granularity than the generic statement
about conditional dependence that is implied by the existence of an edge
connecting the corresponding vertices in a Bayesian network. How can we
leverage refined knowledge about the form of the relationship between factors
in the cell, and how can we discover such refined knowledge from data?

We propose a general method for providing increased refinement of knowl-
edge in graphical models by introducing a constraint framework. In this
framework, knowledge about the structure of the relationship between two
variables is represented in the form of a constraint that the relationship must
satisfy. The data is not forced to obey these constraints (after all, the data is
noisy) but the parameters that characterize the distributions used to model
the data are forced to obey these constraints. Before describing the exact
method for exploiting such constraints, we first discuss how the presence of
constraints can be beneficial in scoring and discovering graphical models in
the presence of observed data.

As mentioned in Section 4, the likelihood component of a model’s score
can be viewed as the average probability of generating the observed data over
all possible values of the parameter vector, θ. From a sampling perspective,
the contribution of the likelihood term to the score can be viewed as a two-
level data generation process whereby a realization of the parameter vector,
θ, is selected at random from its prior distribution, and then the probability



of generating the observed data is calculated using this realization of θ. The
probability of generating the data is then averaged over repeated samplings.
This interpretation reveals that a model will score poorly if there is not a
sufficiently large mass of realizations in the complete distribution of θ that
are capable of generating the data with sufficiently high probability.

On the other hand, if the model is constrained to the extent that the
distribution of θ has a great deal of its mass concentrated on realizations that
are capable of generating the data with sufficiently high probability, then the
constrained model will score better under the Bayesian scoring metric. Note
that one constraint on the type of relationship between variables is conditional
independence (edge absence), which is merely a special case in this framework.
Whether the relationship is constrained as independence, or in some other
fashion, if the constraint permits the model to avoid unneeded complexity,
then the model’s score will increase under the Bayesian scoring metric.

6.1 Annotation semantics

We now extend Bayesian network models by adding the ability to annotate
edges, permitting us to represent additional information about the type of
dependence relationship between variables. Although many such annotations
are possible, because monotonic relationships are especially useful in a bio-
logical setting and the most straightforward to characterize semantically, we
consider here only the following four types of edges:

• An unannotated edge from X to Y represents a dependence that is un-
constrained (the default case). In the presence of unannotated edges from
all parents of Y , we can represent arbitrary combinatorial control of Y .

• A positive (“+”) edge from X to Y indicates that higher values of X
are constrained to bias the distribution of Y higher. This monotonic
influence of X on Y holds for all possible values of the other parents of
Y , though the strength of the influence can vary with the setting of the
other parents. Formally, for all values y of Y , for all values xi < xj of
X , and for all instantiations I of the variables in Pa(Y )/X , we require
P(Y > y |X = xi, I) ≤ P(Y > y |X = xj , I).

• A negative (“−”) edge from X to Y indicates that higher values of X are
constrained to bias the distribution of Y lower. This monotonic influence
of X on Y holds for all possible values of the other parents of Y , again
with possibly varying strength. Formally, for all values y of Y , for all
values xi < xj of X , and for all instantiations I of the variables in
Pa(Y )/X , we require P(Y > y |X = xi, I) ≥ P(Y > y |X = xj , I).



• A positive/negative (“+/−”) edge from X to Y indicates that Y ’s de-
pendence on X is either positive or negative but the true relationship is
not known. This monotonic influence of X on Y holds for all possible
values of the other parents of Y , again with possibly varying strength.

Because edge annotations describe the relationship between a variable and
a single parent while Bayesian networks describe the relationship between
a variable and all its parents, we have chosen to specify the semantics of
annotations by requiring that the implied constraints hold for all possible
values of the other parents.

A given Bayesian network can have any combination of edge annotations.
This enables us to represent finer degrees of refinement regarding the types
of relationships between variables when we desire, but does not force us to
do so as unannotated edges are always permitted. It also allows a model to
evolve as more knowledge is gained about the types of influences that are
present in the biological system under study. For example, all edges can be
initially unannotated, with +/− and then + and − annotations being added
incrementally as activators and repressors are later identified.

The implied constraints on the form of the dependence between variables
permit us to score annotated models much as we score unannotated models.
We simply modify the scoring metric so that the likelihood term is now the
average probability of generating the observed data over all possible values of
the parameter vector θ that satisfy the constraints implied by the annotations.

7 Example: scoring annotated models of the galactose system

When we expand the semantics of Bayesian networks to include annotated
edges, we are able to score models that describe more fine-grained relation-
ships between variables. For example, when we consider again the two models
M1 and M2, and allow the edges in each model to take on all possible com-
binations of annotations (−, +/−, or +), we are able to score the models as
shown in Table 1. In model M1, adding different kinds of annotations fails to
change the score significantly, as the structure of the graph is fundamentally
limited in explaining the observed expression data. The same effect is ob-
served when the edge between Gal4m and Gal2m is considered in model M2,
which is consistent with the results of Figure 4 indicating that the coupling
between Gal4m and Gal2m is indeed quite weak. In contrast, adding a +
annotation to the edge between Gal80m and Gal2m results in a score com-
parable with previously achieved scores, but adding a − annotation to the
same edge worsens the score dramatically. Such an asymmetric response is



Table 1. Scores for models M1 and M2 under all possible configurations of annotated edges.

Gal4m → Gal2m Gal4m → Gal2m

− +/− + − +/− +

Gal80m − -45.3 -44.6 -44.2 Gal80m − -48.9 -47.3 -46.7

↓ +/− -44.6 -43.8 -43.4 ↓ +/− -35.5 -35.4 -35.4

Gal4m + -44.2 -43.4 -43.0 Gal2m + -34.8 -34.8 -34.7

M1 M2

to be expected as failure to explain the observed data is more revealing than
success. This example illustrates that when the constraints implied by edge
annotations cannot be satisfied by the data, scores result that are as poor as
when the underlying structure is incorrect. For this reason, annotations serve
as a useful discriminator of the kinds of relationships present in the data.

The lowest score (-33.6) is achieved by model M2 when the edge from
Gal4m to Gal2m is unannotated and the edge from Gal80m to Gal2m is la-
beled +. Although Gal80 is known to act in a repressive role in the cell, its
level increases as galactose becomes available for metabolism. This increase,
however, is more than offset by a rise in the level of a factor that counter-
acts the effect of Gal80. The identity of this factor is currently unknown
and thus remains unmodeled here, but it is believed to be a byproduct of
the metabolism of galactose.9 A complete model would include the effect of
this latent (unmeasured) variable, and in such a model, it would be expected
that with sufficient data, the edge between Gal80 and Gal2 would be labeled
−, corresponding to the direct repressive role of Gal80. Nevertheless, in the
limited model considered here, a + annotation for the edge is indeed cor-
rect as the level of Gal80 rises concomitantly with the level of Gal2 in our
experimental data.

8 Discussion

There are certain limitations when using Bayesian networks for modeling ge-
netic regulatory networks. The most important of these is the caution with
which models must be interpreted. While graphs are highly interpretable
structures for representing statistical dependencies, they have the potential
to be misleading if interpreted incorrectly. It is important to distinguish be-
tween statistical interaction and physical interaction.

For example, if the data strongly supports the inclusion of an edge be-



tween two variables X and Y , that may indicate a physical interaction between
these two factors in the cell. Alternatively, it is possible that an unmodeled
variable Z actually intermediates between X and Y , such that X and Y ex-
hibit statistical dependence but no physical interaction. As in the example
in Section 7, caution must be used when interpreting models that may be
missing critical explanatory variables. In contrast, if the data strongly sup-
ports the exclusion of an edge between two variables X and Y , that may
indicate there is no physical interaction between these two factors in the cell.
Alternatively, we may not have observed the cell under an appropriate set of
conditions where this interaction could have been observed. This was the case
in Section 5 when there was not strong support for including an edge between
Gal4m and Gal2m, though the two factors are known to interact in the cell.

In general, multiple biological mechanisms may map to the same set of
statistical dependencies and thus be hard to distinguish on the basis of statis-
tical tests alone. Moreover, if there is not sufficient data to observe a system
in a number of different configurations, we may not be able to uncover cer-
tain dependencies. These two limitations are not specific to this methodology,
however, but rather are true for scientific inquiry in general.

As for the cost associated with scoring large models, it should be noted
that this cost is to a large extent based on the in-degree (number of parents)
of the variables in the models. As we scale up to larger models, the in-degree
is likely to remain fairly small whereas the out-degree might be very large,
which is fine for our Bayesian network approach.

One limitation of comparing regulatory network models is that human
effort is needed to formulate the models being compared. However, with a
principled scoring metric, automatic model induction becomes possible. Al-
though in this paper we only present examples in the context of model valida-
tion and comparison, we have also successfully used our modeling framework
in the context of model induction (work still in progress).

9 Directions for future work

9.1 Beyond genomic expression data: information fusion

In this paper, we have discussed how genomic expression data can be used
to elucidate genetic regulatory networks but there are many other sources of
data that we can exploit for this task. We distinguish between two classes
of additional data. The first consists of data that can be measured simulta-
neously with gene expression. Examples include protein expression, protein
modification, levels of metabolites or other small molecules, or even cell mor-



phology. As long as these are observed in tandem with the levels of gene
expression, they can be modeled simply by adding additional variables to the
graph.

The second class consists of data that cannot be gathered at the same
time as the levels of gene expression are measured. Examples include learning
from a two-hybrid screen that two proteins interact, learning from location
analysis that a transcription factor binds to the upstream sequences of certain
genes, or learning from sequence analysis that two genes share a common
promoter motif. In theory, the Bayesian methodology provides principled
ways for incorporating this additional information as it has a natural provision
for incorporating prior information into its scoring metric; in practice, giving
appropriate weight to each of these sources of information poses a significant
challenge.

9.2 Guided discovery of network models

Rather than developing a single monolithic algorithm that unearths major
biological insights automatically from large mounds of data, we can consider
algorithms that work to develop these insights by combining the user’s deep
intuition about the operation of biological systems with the computational
learning that is possible with vast quantities of data. Thus, an important
goal will be to develop algorithms and tools that are capable of augmenting
the user’s intuition. Bayesian frameworks are ideally suited to combining
the prior information of users with the information embedded in repeated
observation of the system in question, but we will likely need to consider tools
that do not gather all the prior information in advance and then discard the
user, but rather tools that extract helpful information from the user as it is
needed in the learning process. This process will likely be interactive and
online, not limited simply to batch learning from data. Ideally, these tools
will be able to suggest new experiments to be conducted and the interactive
process will proceed as new data continue to be generated.

9.3 Experimental suggestion

The necessity of observing a system in a number of configurations in order to
best elucidate its structure suggests the possibility of performing experimental
suggestion in the future. In such a context, existing models and data could be
used to generate suggestions for new experiments, yielding data that would
optimally elucidate a given regulatory network.

As discussed above, elucidation of genetic regulatory networks will not
simply be a batch learning process. The space of possible models to consider



is so large that we cannot even begin to imagine gathering sufficient data to
allow an algorithm to simply churn away and produce a correct model without
any intervention. Rather, we will need to consider learning that is incremental
and learning algorithms that are online.

In particular, rather than gathering data sampled from the joint proba-
bility space over all relevant variables in cellular regulatory networks, it will
be important to carefully design experiments to learn information about the
specific portions of these networks that remain ambiguous. Being able to sug-
gest the next series of experiments to conduct is especially valuable in this
context of learning from genomic expression data because the data is costly to
gather, in terms of both laboratory time and money. It would be quite useful
to know in advance which are likely to be the most informative experiments
to conduct for elucidating biological mechanisms of interest.

This field is known as active learning and there is an existing literature
that can be applied and extended in this domain. Of special interest is the
ability to suggest experiments for collecting not only observational data but
also interventional data. In the context of genetic regulatory networks, this
can be implemented by deleting a gene so that it cannot be expressed or
by constitutively over-expressing a gene. Interventional data needs to be
treated differently from observational data in the context of learning, but the
framework easily extends to handle interventional data.

9.4 Other extensions

Other directions for future work that were mentioned earlier include using
graphical models such as dynamic Bayesian networks to model the simple
dynamics of genetic regulatory networks, using variational methods to produce
efficient tools for scoring regulatory networks with latent variables, increasing
the variety of edge annotations permitted in models, and fast algorithms to
search for appropriate annotations during the model induction process.
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