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ABSTRACT

Motivation:Genome-widechromatin-immunoprecipitation(ChIP-chip)

detects binding of transcriptional regulators to DNA in vivo at low res-

olution. Motif discovery algorithms can be used to discover sequence

patterns in the bound regions that may be recognized by the immuno-

precipitated protein. However, the discoveredmotifs often do not agree

with the binding specificity of the protein, when it is known.

Results: We present a powerful approach to analyzing ChIP-chip

data, called THEME, that tests hypotheses concerning the sequence

specificity of a protein. Hypotheses are refined using constrained local

optimization. Cross-validation provides a principled standard for select-

ing the optimal weighting of the hypothesis and the ChIP-chip data and

for choosing thebest refinedhypothesis.Wedemonstratehow toderive

hypotheses for proteins from 36 domain families. Using THEME

together with these hypotheses, we analyze ChIP-chip datasets for

14 human and mouse proteins. In all the cases the identified motifs

are consistent with the published data with regard to the binding

specificity of the proteins.

Availability: THEME is freely available for download.

Contact: fraenkel-admin@mit.edu

Supplementary information: http://fraenkel.mit.edu/THEME

1 INTRODUCTION

Transcriptional regulatory proteins determine the distinct set of

genes that are expressed in particular tissues and in response to

environmental changes. These proteins are directed to their targets

by short, often degenerate, sequence patterns. There is great interest

in developing computational analyses of high-throughput data to

identify and interpret these regulatory interactions on a genome-

wide level (Bar-Joseph et al., 2003; Conlon et al., 2003; Segal et al.,
2003; Beer and Tavazoie, 2004; Hall et al., 2004; Harbison et al.,
2004; Hong et al., 2005; Kelley and Ideker, 2005; Segal et al., 2005;
Smith et al., 2005). One particularly important data source for these

analyses is high-throughput chromatin-immunoprecipitation

(ChIP-chip), which identifies regions occupied by regulators

in vivo. Applying motif discovery algorithms to these data can

reveal the sequence patterns present in the bound regions that reflect

the binding specificity of each regulator.

Motif discovery algorithms identify common sequence patterns

(‘motifs’) among a set of larger sequences (Lawrence et al., 1993;
Bailey and Elkan, 1994; Roth et al., 1998; Hertz and Stormo,

1999; Stormo, 2000; Liu et al., 2001, 2002; Sinha and Tompa,

2002; Bulyk, 2003; Sandelin and Wasserman, 2004; Xing and

Karp, 2004). Although these patterns may represent the binding

specificity of regulators, the biological meaning of the many iden-

tified motifs is often unclear. In the study of Harbison et al. (2004),
several programs were used to analyze binding data for 203 yeast

proteins. Although these programs identified over 68 000 motifs,

they failed to recover the specificities of 138 of 203 proteins. The

majority of the discovered motifs were probably either non-

functional patterns overrepresented by chance or sites for other

proteins that function either synergistically, antagonistically or

independently of the immunoprecipitated protein.

Identification of functionally relevant motifs in genomes of

higher eukaryotes is even more challenging than in yeast. Regulat-

ory regions in higher eukaryotic genes are substantially larger and

more complex, and sequence features common in mammalian gen-

omes such as CpG islands further confound motif discovery meth-

ods. A recent evaluation of 13 motif discovery tools demonstrated

the limitations of these techniques for analyzing mammalian pro-

moter sequences (Tompa et al., 2005). There is an immediate need

for more powerful and robust approaches, as new ChIP-chip data

have begun to emerge for human and mouse tissues (Li et al., 2003;
Cam et al., 2004; Odom et al., 2004; Bernstein et al., 2005; Boyer
et al., 2005; Brodsky et al., 2005).
We have developed a hypothesis-driven approach that is effective

in analyzing ChIP-chip data from human and mouse tissues. Our

algorithm, called THEME, is not designed for motif discovery, per

se. Rather, it uses principled statistical methods to test hypotheses

about the binding specificity of the immunoprecipitated protein.

THEME evaluates hypotheses based on their ability to predict

accurately which sequences from a held-out test set were bound

by the protein and which were not. The most predictive hypothesis�To whom correspondence should be addressed.
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is either accepted or rejected by comparing its predictive value with

that of motifs derived by applying the same algorithm to randomly

selected input sequences. This approach complements the standard

motif discovery techniques.

By deriving initial hypotheses from the binding sites of related

proteins in the TRANSFAC database (Matys et al., 2003) we can

determine whether or not there is a motif that explains the binding

data and is consistent with the domain structure of the transcrip-

tional regulator. Most DNA-binding domains show a limited rep-

ertoire of sequence specificity, and family members usually

recognize variants of the same core sequences. For example, many

bZIP proteins bind to variations of the AP-1 site (TGANTCA), the

ATF-CREB (TGANNTCA) or the C/EBP site (ATTKC). Similarly,

HLH proteins often bind to E-boxes (CANNTG), and differ largely

in their specificity for the two middle base pairs and the flanking

regions. THEME provides a method for determining if the speci-

ficity of the immunoprecipitated protein is similar but not neces-

sarily identical to the prototypes for its family. Using new ChIP-chip

results as well as previously published data, we demonstrate the

utility of this approach by accurately identifying motifs that

correspond to the specificity of 14 mammalian proteins from

10 different domain families.

2 ALGORITHM AND METHODS

THEME is a method for testing hypotheses with regard to the DNA-binding

specificity of proteins (Fig. 1). The initial hypothesis consists of a position

weight matrix (PWM) (Stormo, 2000) model of the binding specificity,

describing the probability distribution for bases at each position of a binding

site. Hypotheses can be derived from a variety of sources. Input consists of a

set of sequences bound by the protein of interest (the positive data), as well as

sequences that are not bound (the negative data). Using cross-validation,

hypotheses are refined with training data and evaluated on held-out test data

to identify the most predictive motif (Fig. 2). The statistical significance of

the best motif is then determined.

2.1 Hypothesis generation—Family Binding Profiles

While hypotheses from any source can be tested, here we derive hypotheses

from known binding sites of proteins that belong to the same DNA-binding

domain family as the immunoprecipitated protein. Individual members of

protein families generally bind related DNA sequences due to structural

constraints. These preferences can be represented as PWMs and have

been designated Family Binding Profiles (Sandelin and Wasserman,

2004). Family Binding Profiles capture sequence features common to the

binding sites of many members of the family, but are consequently poor

representations of the specificity of individual family members.

We derive profiles from unaligned binding sites in the TRANSFAC v7.2

database (Matys et al., 2003). Pfam hidden-Markov models (Bateman et al.,
2004) identify 37 families of DNA-binding domains in TRANSFAC that

each contain at least 4 proteins and 30 sites. We pool all the binding sites

reported in TRANSFAC for members of a family and submit these

sequences to two motif discovery programs: AlignACE (Roth et al.,
1998) and DimerFinder. Our approach successfully identifies one or more

motifs for 36 families (Supplementary Table S1 and online Supplementary

material). On average, a family is represented by three profiles. In some

cases, profiles discovered by AlignACE and DimerFinder are very similar.

AlignACE is run with the default options, except that uniform background

base frequencies are used, and for better reproducibility the program is

applied 10 times to each family with different random number seeds.

All the resulting motifs for each family are grouped together and ranked

according to the enrichment score (Harbison et al., 2004) of the motif.

The top-ranked motif is used as a profile. We iteratively search for additional

Fig. 1. Overview of THEME. (A) THEME requires that one or more binding

hypotheses be specified in the formof a PWM. (B) The data are partitioned for

cross-validation. Using only the training data, the hypotheses are refined

using the EM algorithm at varying parameter settings. (C) The refined

hypotheses are used to train a classifier and the classification error on the

held-out test data is evaluated. (D) The hypothesis and parameter setting that

yields the best mean cross-validation error is identified. (E) The statistical

significance of the observed cross-validation error is estimated by comparing

it with a distribution obtained by applying the hypothesis, with the same

parameter settings, to randomly chosen promoter sequences.

Fig. 2. Hypothesis refinement and cross-validation by THEME. Positive se-

quencesare those thatwere bound in theChIP-chip experiments. The remaining

sequences on the array are the negative set. Positive and negative data are

separated into training and test sets. The positive training examples are used to

refine the hypothesis using EM.All training and test examples are thenmapped

to a one-dimensional feature space by evaluating the LLR score of their best

match to the refined hypothesis. A linear-kernel SVMclassifier is trained using

both the positive and negative training examples. This classifier is then used to

evaluate the classification error on the positive and negative test sets.
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motifs by removing all binding sites matching this motif and applying

AlignACE to the remaining sites. We repeat this process until the enrichment

of the top-ranked motif is less than 40.

The profiles discovered by AlignACE do not include all of the known

profiles that are characterized in the literature for some families. Many of the

missing profiles are for domain families that bind DNA as homodimers.

Dimeric proteins typically recognize direct or inverted repeats of short

sequences separated by characteristic distances that may differ between

family members. We use the motif discovery program DimerFinder to

identify motifs with direct or inverted repeats. DimerFinder is a word-

counting method that is described in the Supplementary methods. Source

code for DimerFinder is available from our website.

2.2 Restricted Family Binding Profiles

Family Binding Profiles can be helpful even in situations where there are no

close homologs of a protein of interest. To demonstrate this, we have com-

puted a distinct set of profiles using only data in TRANSFAC for proteins

with <70% sequence identity to the DNA-binding domains of the proteins

analyzed in this paper (Supplementary Table S2 and online Supplementary

material). All reported results use this more restricted set of profiles. For

example, the Family Binding Profiles that we use to discover the specificity

of HNF4a exclude binding data for all HNF4a, HNF4b and HNF4g proteins

from any species. RXRb2 is the most similar protein to HNF4a that is

included in the profiles (Fig. 3).

2.3 Hypothesis testing by cross-validation

The Family Binding Profiles for each protein are refined and tested using

cross-validation to find the hypothesis that best explains the binding data. We

define the set of bound probe sequences as our positive set. We produce a

negative set by randomly undersampling the set of unbound probes until it is

10 times larger than the positive set. To avoid overfitting motifs to the

data, we partition the sequences into test and training sets. We perform

THEME hypothesis testing using the following five-step procedure:

(1) Refine the hypothesis on the positive training set

(2) Score each sequence in the training and test data using the refined

model

(3) Oversample the positive training and test data

(4) Train an SVM classifier on the training examples

(5) Classify the test examples and report the classification error.

For each hypothesis we perform a grid search over two parameters (the

parameter b, which measures the strength of our prior belief in the accuracy

of the hypothesis andC, a parameter used as part of the regularization term in

the SVM classifier). We repeat the five-step procedure over each parameter

setting to determine the setting yielding the lowest 3-fold cross-validation

error (Supplementary methods). Each trial takes�6 min for a typical dataset

(grid search for one hypothesis with 380 sequences averaging 898 bases

each) on a 2.8–3.2 GHz dual processor Intel Xeon CPU with 4 GB of

memory. To evaluate the set of profiles for a family, therefore, takes on

average 18 min.

Due to the non-deterministic nature of the sampling procedure, cross-

validation results could, in principle, vary among trials with the same input

and parameters. We compare hypotheses using three separate THEME trials

with different randomly selected negative datasets. The refined motifs did

not vary significantly across these trials. We report the average cross-

validation errors.

The best refined motif model is the one that has the lowest mean error on

the test sets after 3-fold cross-validation. The refinement for this motif is then

repeated using the same parameter values and initial hypothesis, but includ-

ing all the bound sequences to obtain the final reported motif.

2.3.1 Refinement Each hypothesis is refined on the positive data using

the expectation-maximization (EM) algorithm with a Bayesian prior. For

EM, we used the ZOOPS probability model described by Bailey and Elkan

(1994). Since each hypothesis is a probabilistic weight matrix, it can be used

directly in the ‘E’ step of EM. The E and ‘M’ steps are alternated until the

Euclidean distance between the model in subsequent M steps are less than

10�3. In the M step, the PWMmodel is updated using the expected counts in

each position of the matrix. The change in the model during the M step is

restrained using pseudocounts added to the matrix in proportions determined

by the original hypothesis and the value of the b parameter. b is defined as

the fraction of the total counts added to the matrix during the M step that are

pseudocounts used to restrain the model. A b of 0.0 indicates that EM

refinement proceeds without restraint. When b ¼ 1.0, no refinement is

carried out. Refinements occur in parallel with b values of 0.05, 0.1,

0.33, 0.5, 0.67 and 1.0. The fifth-order Markov background model used

in EM was estimated from the set of all sequences represented on the

Fig. 3. Similarity of the nuclear hormone receptor DNA-binding domains to HNF4a. The graph shows the percent identity between the DNA-binding domain of

HNF4a and each nuclear hormone receptor protein in TRANSFAC. Proteins with >70% sequence identity were excluded when we derived the Family Binding

Profiles in Supplementary Table S2. The same threshold was used to generate the restricted profiles for all other proteins.

Understanding ChIP-chip data by hypothesis testing

425

 at M
athem

atics R
eading R

oom
 on M

ay 19, 2010 
http://bioinform

atics.oxfordjournals.org
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org


microarray for a given experiment. Our implementation is written in Python,

with core EM routines written in C++ and is based on TAMO (Gordon et al.,

2005). Source code is available from our website.

2.3.2 Classifying sequences using the refined motif In order to

train a classifier and perform cross-validation, the refined hypotheses

must be used to define one or more features to score each sequence. In

this study, the sequences are evaluated using the log-likelihood ratio

(LLR) score of the best match to the refined hypothesis. This score is an

intuitive feature that measures our belief that the best match is an instance of

the motif, described by the PWMmodel, after taking into account the single-

nucleotide base distribution of the background sequences.

Typically, an arbitrary threshold is used to determine when the LLR is

high enough to constitute a match (Harbison et al., 2004). We chose a more

principled approach, using a linear-kernel support vector machine (SVM) to

determine the threshold that best separates the bound and unbound sequences

in the training data. The scores of the training data are scaled so that they fall

between�1.0 and 1.0, and used to train the SVM at a particular setting of the

parameter, C, which is used in the regularization term. The values of C tested

are 1.0E�10, 1.0E�4, 1.0E�3, 1.0E�2, 0.05, 0.1, 1.0, 10.0 and 100.0. The

test data are then scaled in an identical manner and classified using the SVM.

The classification error of the SVM on the test data is evaluated using the

optimal value of C determined from the training data.

When building classifiers from datasets with a significant imbalance in the

proportion of positive and negative examples, it is important to ensure that

the classifier has sufficient sensitivity to the minority class. One solution is to

resample the dataset to achieve greater balance between the two classes. We

combine undersampling of the negative dataset with SMOTE oversampling of

the positive training and test sets so that the number of positive and negative

examples is equal. This technique has been shown to improve classification

performance on datasets with large disparities in the sizes of the minority and

majority classes (Chawla et al., 2002).

2.4 Significance testing

We determine the empirical probability distribution of obtaining a mean

cross-validation error for a particular Family Binding Profile under the null

hypothesis that the input sequences are unrelated to the profile. We compute

the distribution of cross-validation errors by running THEMEmultiple times

using sets of sequences equal in size to the original dataset, selected at

random from all those present on the microarray. These calculations are

conducted with the same hypothesis and b settings as before. We assume the

observed cross-validation errors are normally distributed and perform ran-

domization runs until the standard error on our estimate of the standard

deviation is �10%. We then compare the observed cross-validation errors

with the computed distribution and perform a Z-test to assess the statistical

significance of the cross-validation error achieved by a refined hypothesis.

2.5 Comparison to known specificities

The cross-validation error of the best refined hypothesis for each protein is

compared with the error obtained using the protein’s TRANSFAC motif

(where available), which is determined by running THEME with the

TRANSFAC PWM, omitting the EM refinement step. The best refined

motifs are compared with TRANSFAC motifs for the same protein by

calculating an inter-motif distance [as described previously (Harbison et

al., 2004)]. We also calculate a mean and standard error on the mean of

the motif’s distance to all the motifs described in the TRANSFAC database

for comparison.

2.6 Input sequences

The data sources for each experiment are listed in Supplementary Table S3.

We extend the DNA sequences represented on the cDNA-based microarray

by 250 bp upstream and downstream to account for hybridization of long

shearing products. For tiled oligonucleotide arrays, we use a 500 bp window

centered on each probe.

2.7 ChIP experiments

Chromatin-IP experiments were performed using self-printed DNAmicroar-

rays containing portions of promoter regions of human or mouse genes as

previously described (Odom et al., 2004). The arrays contained 13 000

(mouse) and 19 000 (human) promoter regions. Additional details are avail-

able in the Supplementary methods. The data have been submitted to Array-

Express under accession number E-WMIT-8.

3 RESULTS

3.1 Example

HNF4a is an important regulator of transcription in liver, and muta-

tions in this gene cause one form of maturity onset diabetes of the

young (Bell and Polonsky, 2001). Odom et al. (2004) reported

chromatin-immunoprecipitation data for HNF4a obtained from

human tissues. To analyze these data using THEME, we derived

eight profiles for HNF4a using TRANSFAC data for nuclear

hormone receptor proteins that are not closely related to HNF4a

(Fig. 3).

Each profile was used as an initial hypothesis and refined using

the positive training data for the most strongly bound genes (binding

P-value < 0.001). The mean test errors for these hypotheses after

3-fold cross-validation on the HNF4a data are shown in Supple-

mentary Table S2. The refined motif with the lowest mean cross-

validation error corresponds to hypothesis H. This motif matches

the HNF4a motif reported in TRANSFAC and is statistically sig-

nificant, with the cross-validation error of 0.30 being over 9 SD

below the mean estimated from randomized data. The final classi-

fication results indicate that �77% of sequences bound by HNF4a

in human liver contain this motif.

3.2 Analysis of published human ChIP-chip data

We tested THEME by applying it to published ChIP-chip experi-

ments for 10 additional human transcriptional regulators, which are

members of 6 different DNA-binding domain families (Supple-

mentary Table S3). These data are quite diverse and thus constitute

a good set of experiments with which to evaluate THEME. Initial

hypotheses were generated using Family Binding Profiles derived

from the TRANSFAC binding sites, excluding data for close homo-

logs, as described for HNF4a. In each case, the refined hypothesis

with the best cross-validation error is statistically significant and

agrees with previously reported motifs or binding sites for the

protein (Table 1).

3.3 New human and mouse ChIP-chip experiments

To further demonstrate that our approach is applicable to a wide

variety of transcriptional regulators, we performed genome-wide

chromatin-IP experiments for three additional proteins from three

different domain families: the forkhead protein HNF3b, an import-

ant liver regulator (Kaestner, 2000); the HLH protein NeuroD1,

which causes MODY diabetes when haploinsufficient (Malecki

et al., 1999) and the winged helix protein E2F4, a central regulator

of the cell cycle (Trimarchi and Lees, 2002). As before, we derived

the hypotheses for each protein by creating Family Binding Profiles

from TRANSFAC sites, excluding data for close homologs.

The resulting motifs are statistically significant and agree with

the published specificity data for these proteins (Table 1).

NeuroD1 illustrates the power of THEME when there is little prior

knowledge with regard to the DNA-binding specificity of a protein or
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that of its close homologs. The most similar protein that has known

binding sites in TRANSFAC (v7.2) is the T-cell acute lymphocytic

leukemia-1 protein, SCL/TAL1, which is only 48% identical to

NeuroD1 in its DNA-binding domain. Nevertheless, we find a

motif, sCAgcTGs, which is statistically significant, present in 97%

of the bound probes on the mouse array and consistent with known

sites for NeuroD1 in the promoter of Pax6 (Marsich et al., 2003).

3.4 Importance of hypothesis testing

Leveraging prior biological knowledge is crucial for successfully

identifying the correct motif in complex mammalian datasets. To

demonstrate this, we ran the THEME algorithm using an uninform-

ative hypothesis, equal in length to the correct motif, but consisting

of background nucleotide frequencies. The uninformative hypo-

theses produced the correct motif in only one case (HNF6). The

cross-validation error for motifs derived from uninformative priors

was always higher than when Family Binding Profiles were used.

Of the motif discovery programs that we tested on these data,

AlignACE performed the best, discovering motifs consistent with

the known specificities in six cases (Supplementary Table S4). The

cross-validation errors for AlignACE motifs were always higher

than those discovered by THEME. To obtain the AlignACE results,

we needed to run the programmultiple times using different random

number seeds. A typical AlignACE calculation required 21 h to

complete, compared with 18 min for THEME.

3.4.1 Deriving hypotheses with limited prior data In the absence

of Family Binding Profiles THEME can be used to take advantage

of other available data, such as known binding sites. To demonstrate

this we derived hypotheses from each of the three known and

distinct NeuroD1 binding sites (Marsich et al., 2003) by assigning

99% of the probability mass to the nucleotide represented in the

sequence and distributing the remaining mass among the other 3 nt

at each position. The PWMs were provided as hypotheses to

THEME. The refined motifs match the NeuroD1 motif reported

in Table 1 and display similar cross-validation errors (Supplement-

ary Table S5).

In many cases, THEME is able to identify the correct motif, even

if the DNA-binding domain or binding sites of the factor are not

specified. To demonstrate this, we ran THEME for each factor in

Table 1, using every profile across all families as initial hypotheses.

We ranked the resulting refined motifs by their cross-validation

errors (Supplementary Table S6). In 10 out of 14 cases, we observe

Table 1. Comparison of refined THEME hypotheses and previously reported data

Protein Refined hypothesis TRANSFAC Distancec Mean distanced

Motif Errora Z-scoreb b Motif Errora

c-Rel 0.34 ± 0.00 4.93 0.5 0.38 ± 0.00 0.18 0.44 ± 0.06

HNF4a 0.30 ± 0.02 9.92 0.1 0.34 ± 0.02 0.17 0.40 ± 0.04

HNF6 0.32 ± 0.00 13.50 0.5 0.42 ± 0.00 0.29 0.44 ± 0.04

Nanog 0.42 ± 0.00 9.88 0.5 TAATSGSYe N/A N/A N/A

Oct4 0.41 ± 0.00 15.90 0.5 0.42 ± 0.00 0.09 0.43 ± 0.05

P-CREB 0.40 ± 0.00 11.66 0.5 0.42 ± 0.00 0.13 0.43 ± 0.05

p50 0.30 ± 0.00 13.23 0.05 0.30 ± 0.00 0.20 0.43 ± 0.05

p52 0.21 ± 0.01 8.88 0.33 0.33 ± 0.01 0.25 0.46 ± 0.05

p65 0.40 ± 0.00 3.95 0.1 0.40 ± 0.01 0.20 0.44 ± 0.05

RelB 0.30 ± 0.00 9.33 0.67 N/A N/A N/A N/A

Sox2 0.39 ± 0.01 22.37 0.67 AACAA[A/T]Ge N/A N/A N/A

E2F4 0.34 ± 0.00 16.15 1.0 0.36 ± 0.00 0.20 0.42 ± 0.05

HNF3b 0.39 ± 0.01 5.85 0.05 0.48 ± 0.01 0.20 0.42 ± 0.05

NeuroD1 0.35 ± 0.00 14.71 0.33 CARNTGe N/A N/A N/A

aMean 3-fold cross-validation error over three separate trials.
bZ-score obtained by comparing the cross-validation errors with those observed for randomization controls.
cDistance between the refined motif and the TRANSFAC motif.
dDistance between the refined motif and all motifs in TRANSFAC (mean ± SD).
eThere are no binding sites for Nanog, NeuroD1 or Sox2 in TRANSFAC v7.2. The site listed for Nanog is taken from Mitsui et al. (2003), the site for NeuroD1 is from Marsich

et al. (2003) and the site for Sox2 is from Maruyama et al. (2005).

Fig. 4. Effect of noise on cross-validation error. The Family Binding Profiles

yielding the lowest cross-validation error for each datasetwere corruptedwith

varying amounts of noise to produce 11 hypotheses of gradually decreasing

quality. These were used as hypotheses in THEME. The mean cross-

validation error for the refined motif from each hypothesis is compared with

the best hypothesis for the same dataset.
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that the correct motif, derived from a hypothesis corresponding to

the factor’s DNA-binding domain family, has the lowest cross-

validation error. Furthermore, in 13 out of 14 cases, the correct

motif and the correct family are ranked in the top 5 families (the

correct family for Nanog was ranked 8th out of 36 families).

3.4.2 Noise tolerance of hypotheses THEME does not require

highly accurate initial hypotheses. To demonstrate this we used

THEME to refine noisy versions of the hypotheses that yielded

the lowest cross-validation error for each factor. We obtained

these hypotheses by combining, in various ratios, 1000 sequences

derived from the uncorrupted PWM and from the background base

frequencies. Noise levels of up to 40% have little effect on the cross-

validation errors (Fig. 4). In 13 of the 14 datasets the motifs obtained

with 40% noise are consistent with the known specificities

(Supplementary Table S7).

4 DISCUSSION

Genome-wide chromatin-immunoprecipitation experiments pro-

vide a snapshot of the physical interactions of a single protein

with the genome. Computational analysis of these data has the

potential to reveal the sequence motifs that control transcription.

However, the statistical criteria typically used in evaluating the

motifs produced by motif discovery algorithms cannot directly

measure the likelihood that a motif is biologically significant.

We present a hypothesis-driven approach to analyzing ChIP-chip

data that differs from motif discovery programs and is complement-

ary to these methods. Unlike motif discovery, we begin by speci-

fying hypotheses and then establish whether these hypotheses are

supported by the data. THEME is able to determine whether to

accept or reject a hypothesis because it seeks to solve a classification

problem. A good motif distinguishes between bound and unbound

sequences in the test set. An incorrect hypothesis may produce a

motif that appears significant on the training data, but it will be

poorly represented in the test data. We note that cross-validation has

recently been used as a method for limiting model complexity in an

alternative approach to PWMs based on boosting (Hong et al.,
2005).

4.1 Incorporating biological knowledge

Our hypothesis-testing framework is particularly valuable because

it addresses the issue of interpreting motifs. THEME not only

assesses whether there is a motif that can distinguish bound and

unbound sequences, but also whether that motif is consistent with

prior biological knowledge.

When prior biological knowledge is available, either in the form

of a known DNA-binding domain or known binding sites (as for

NeuroD1), the accuracy of THEME is dramatic. THEME identifies

a statistically significant motif consistent with the expected speci-

ficity for all 14 datasets we analyzed. By contrast, using the cross-

validated approach without an informative prior fails to identify

the correct motif in all but one of these mammalian datasets. We

note that the THEME motifs are of very high quality. For the

proteins with motifs reported in TRANSFAC, in all cases the refined

THEME motif had equivalent or better cross-validation error than

the corresponding motif from TRANSFAC (Table 1). The quality of

the motifs results, in part, from the algorithm’s ability to determine

the optimal relative weights for the binding data and the prior. No

single choice of this relative weight (b) is suitable for all datasets, as

can be seen in Table 1.

By testing Family Binding Profiles as hypotheses, we are able to

determine whether ChIP-chip data contain a motif that is consistent

with the DNA-binding domain in the immunoprecipitated protein.

Analyses based on DNA-binding domains have been used previ-

ously to aid motif discovery and interpretation (Sandelin and

Wasserman, 2004; Xing and Karp, 2004; Mahony et al., 2005;
Tan et al., 2005). Our Family Binding Profiles extend previous

efforts by adding new families and more variants within each fam-

ily. We have derived Family Binding Profiles for 36 of the 37 most

common DNA-binding domains. Family Binding Profiles are not

appropriate for the C2H2-zinc finger family, whose members have

diverse binding preferences. However, it should be possible to

analyze individual members of this family by deriving initial hypo-

theses using the sequence composition of the key base-contacting

residues (Benos et al., 2002; Kaplan et al., 2005).

4.2 Extending THEME

In the absence of information about the DNA-binding domain of

the protein, THEME is often able to identify the correct motif

by exhaustively testing all available Family Binding Profiles.

These results suggest that THEME may be a valuable tool in the

analysis of diverse data. As THEME reveals the family of the

domain that produced the most predictive motif, it provides

insight into regulation that cannot be obtained by motif discovery

alone.

Traditional motif discovery methods could be used together with

THEME to develop a more complete understanding of transcrip-

tional regulation. For example, our analysis identified a motif for

HNF4a present in 77% of the bound sequences that is likely to

direct HNF4a to its highest affinity targets through direct protein–

DNA contacts. Previous analysis of these data did not discover the

HNF4a motif, but identified enriched motifs for several other pro-

teins (Smith et al., 2005). These other proteins may serve to recruit

HNF4a as a coactivator to liver- or pancreas-specific genes that do

not contain matches to the HNF4a motif (Eeckhoute et al., 2004).
THEME could be extended to incorporate additional information

or to explore higher order feature combinations. Phylogenetic

conservation information, for instance, could be incorporated

using one of several previously reported conservation-based

motif discovery tools (Wang and Stormo, 2003; Moses et al.,
2004; Li and Wong, 2005) in the refinement step. In addition,

conservation metrics could be used as an additional feature in train-

ing the SVM classifier.

The hypothesis-based approach of THEME provides a principled

method for interpreting high-throughput data sources. Combined

with other techniques, THEME will allow researchers to discover

the mechanistic basis for regulation in mammalian systems.
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