
JOURNAL OF COMPUTATIONAL BIOLOGY
Volume 10, Numbers 3–4, 2003
© Mary Ann Liebert, Inc.
Pp. 341–356

Continuous Representations of Time-Series
Gene Expression Data

ZIV BAR-JOSEPH,1 GEORG K. GERBER,1 DAVID K. GIFFORD,1

TOMMI S. JAAKKOLA,2 and ITAMAR SIMON3

ABSTRACT

We present algorithms for time-series gene expression analysis that permit the principled
estimation of unobserved time points, clustering, and dataset alignment. Each expression
pro� le is modeled as a cubic spline (piecewise polynomial) that is estimated from the ob-
served data and every time point in� uences the overall smooth expression curve. We con-
strain the spline coef� cients of genes in the same class to have similar expression patterns,
while also allowing for gene speci� c parameters. We show that unobserved time points can
be reconstructed using our method with 10–15% less error when compared to previous best
methods. Our clustering algorithm operates directly on the continuous representations of
gene expression pro� les, and we demonstrate that this is particularly effective when applied
to nonuniformly sampled data. Our continuous alignment algorithm also avoids dif� cul-
ties encountered by discrete approaches. In particular, our method allows for control of
the number of degrees of freedom of the warp through the speci� cation of parameterized
functions, which helps to avoid over� tting. We demonstrate that our algorithm produces
stable low-error alignments on real expression data and further show a speci� c application
to yeast knock-out data that produces biologically meaningful results.

Key words: time series expression data, missing value estimation, clustering, alignment.

1. INTRODUCTION

Principled methods for estimating unobserved time points, clustering, and aligning microarray
gene expression time-series are needed to make such data useful for detailed analysis. Datasets mea-

suring temporal behavior of thousands of genes offer rich opportunities for computational biologists. For
example, dynamic bayesian networks may be used to build models and to try to understand how genetic
responses unfold. However, such modeling frameworks need a suf� cient quantity of data in the appropriate
format. Current gene expression time-series data often do not meet these requirements, since they may
be missing data points, be sampled nonuniformly, and measure biological processes that exhibit temporal
variation.

1MIT Laboratory for Computer Science, 200 Technology Square, Cambridge, MA 02139.
2MIT Arti� cial Intelligence Laboratory, 200 Technology Square, Cambridge, MA 02139.
3Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142.

341

342 BAR-JOSEPH ET AL

In many applications, researchers may face the problem of reconstructing unobserved gene expression
values. Values may not have been observed for two reasons. First, errors may occur in the experimental
process that lead to corruption or absence of some expression measurements. Second, we may want to
estimate expression values at time points different from those originally sampled. In either case, the nature
of microarray data makes straightforward interpolation dif� cult. Data are often very noisy and there are
few replicates. Thus, simple techniques such as interpolation of individual genes can lead to poor estimates.
Additionally, in many cases, there are a large number of missing time points in a series for any given gene,
making gene speci� c interpolation infeasible. In the case of clustering, the treatment of time series can be
problematic, as a time series represents a set of dependent experiments. A particular problem arises when
series are not sampled uniformly such as in Spellman et al. (1998), Chu et al. (1998), and Eisen et al.
(1998).

Variability in the timing of biological processes further complicates gene expression time-series analysis.
The rate at which similar underlying processes such as the cell-cycle unfold can be expected to differ across
organisms, genetic variants, and environmental conditions. For instance, Spellman et al. (1998) analyze
time-series data for the yeast cell-cycle in which different methods were used to synchronize the cells. It
is clear that the cycle lengths across the different experiments vary considerably and that the series begin
and end at different phases of the cell-cycle. Thus, one needs a method to align such series to make them
comparable.

In this paper, we use statistical spline estimation to represent time-series gene expression pro� les as
continuous curves. Our method takes into account the actual duration each time point represents, unlike
most previous approaches that treat expression time series like static data consisting of vectors of discrete
samples (Eisen et al., 1998; Holter et al., 2001; Friedman et al., 2000). Our algorithm generates a set of
continuous curves that can be used directly for estimating unobserved data. However, although our method
uses spline curves (piecewise polynomials) to represent gene expression pro� les, it is not reasonable to � t
each gene with an individual spline due to the issues with microarray datasets discussed above. Instead,
we constrain the spline coef� cients of genes in the same class to covary similarly, while also allowing for
gene-speci� c parameters. A class is a set of genes with similar expression pro� les that may be constructed
using prior biological knowledge or clustering methods. We present a clustering algorithm that infers
classes automatically by operating directly on the continuous representations of expression pro� les. This
is particularly effective when applied to nonuniformly sampled data. However, note that our method does
require data that has been sampled at a suf� ciently high rate. We demonstrate in Section 6 that our method
performs well on several such datasets, but for other datasets that have been sampled at rates too low to
capture changes in the underlying biological processes, our method will not be effective. A future direction
would be to use our method to determine the quality of the sampling rate.

Our alignment algorithm uses the same spline representation of expression pro� les to continuously time-
warp series. First, a parameterized function is chosen that maps the time scale of one series into another.
Because we use parameterized functions, we are explicitly specifying the number of allowed degrees of
freedom, which is helpful in avoiding over� tting. Our algorithm seeks to maximize the similarity between
the two sets of expression pro� les by adjusting the parameters of the warping function.

The remainder of this paper is organized as follows. In Section 2, we present a brief introduction to
splines. In Section 3, we discuss our algorithm for estimating unobserved data; and in Section 4, we extend
this algorithm to perform clustering. In Section 5, we present our alignment algorithm. Section 6 presents
applications of our method to expression data, and Section 7 concludes the paper and suggests directions
for future work.

1.1. Related work

Recently, several papers have focused on modeling and analyzing the temporal aspects of gene expression
data. In Holter et al. (2001) a time translational matrix is used to model the temporal relationships between
different modes of singular value decomposition (SVD). Unlike our work, this method focuses on the SVD
modes and not on speci� c genes. In addition, only relationships between time points that are sampled at
the lowest common frequencies can be studied. Thus, not all available expression data can be used. In
Zhao et al. (2001), a statistical model is � t to all genes in order to � nd those that are cell-cycle regulated.
This method uses a custom tailored model, relying on the periodicity of the speci� c dataset analyzed, and
is thus less general than our approach.

CONTINUOUS REPRESENTATIONS OF TIME-SERIES DATA 343

Several papers have used simple interpolation techniques to estimate missing values for gene expression
data. Aach and Church (2001) use linear interpolation to estimate gene expression levels for unobserved
time points. D’haeseleer et al. (1999) use spline interpolation on individual genes to interpolate missing
time points. As we show in Section 6.2, both techniques cannot approximate the expression curve of a
gene well, especially if there are many missing values. In Troyanskaya et al. (2001), several techniques
for missing-value estimations were explored. However, none of the suggested techniques take into account
the actual times the points correspond to, and thus time series data is treated in the same way as static
data. As a consequence, their techniques cannot estimate values for time points between those measured
in the original experiments.

There is a considerable statistical literature that deals with the problem of analyzing nonuniformly sam-
pled data. These models, known as mixed-effect models (Brumback and Rice, 1998), use spline estimation
methods to construct a common class pro� le for their input data. Recently, James and Hastie (2001)
presented a reduced-rank mixed-effects model that was used for classifying medical time-series data. In
this paper, we extend these methods to gene expression data. Unlike the above papers, we focus on the
gene-speci� c aspects rather than the common class pro� le. In addition, we present a method that is able
to deal with cases in which class membership is not given. Another difference between this work and that
of James and Hastie (2001) is that we do not use a reduced rank approach, since gene expression datasets
contain information about thousands of genes.

Many clustering algorithms have been suggested for gene expression analysis (see Sharan and Shamir
[to appear]). However, as far as we are aware, all these algorithms treat their input as a vector of data
points and do not take into account the actual times at which these points were sampled. In contrast, our
algorithm weights time points differently according to the sampling rate.

Aach and Church (2001) present a method for aligning gene-expression time series that is based on
dynamic time warping, a discrete method that uses dynamic programming and is conceptually similar
to sequence alignment algorithms. Unlike with our method, the allowed degrees of freedom of the warp
operation of Aach and Church (2001) depends on the number of data points in the time series. Their
algorithm also allows mappings of multiple time points to a single point, thus stopping time in one of
the datasets. In contrast, our algorithm avoids temporal discontinuities by using a continuous warping
representation. There is also a substantial body of work in the speech recognition and computer vision
community that deals with data alignment. For instance, nonstationary hidden Markov models with warping
parameters have been used for alignment of speech data (Deng et al., 1994), and mutual-information-based
methods have been used for registering medical images (Viola, 1995). However, these methods generally
assume high resolution data, which is not the case with available gene expression datasets.

2. SPLINES

Splines are piecewise polynomials with boundary continuity and smoothness constraints. They are widely
used in � elds such as computer-aided design, image processing, and statistics (Bartels et al., 1987; Watt
and Watt, 1992; Eubank, 1999; James and Hastie, 2001). The use of piecewise low-degree polynomials
results in smooth curves and avoids the problems of over� tting, numerical instability, and oscillations that
arise if single high-degree polynomials were used. In this paper, we use cubic splines since they have a
number of desirable properties. For instance, cubic polynomials are the lowest degree polynomials that
allow for a point of in� ection. Thus, we will restrict the subsequent discussion to the cubic case.

A cubic spline can be represented with the following equation:

y.t/ D
nX

iD1

CiSi.t/; tmin · t < tmax: (1)

Here, t is the parameter (e.g., time), Si.t / are polynomials, and Ci are the coef� cients. The typical way
to represent a piecewise cubic curve is simply

S4jCl.t / D

(
t l¡1; xj · t · xjC1

0 otherwise.
(2)

344 BAR-JOSEPH ET AL

Here, l D 1 : : : 4, j D 0 : : : n=4 ¡ 1, and the xj ’s denote the break-points of the piecewise polynomials.
Thus, we have n=4 cubic polynomials that can be denoted pj .t / D

P4
lD1 C4jClt

l¡1. In order to determine
the coef� cients of these polynomials, n equations are required. If one speci� es a value Dj plus continuity
constraints up to the second derivative for the piecewise polynomial at each break-point xj for j D
1 : : : n=4 ¡ 1, four equations are obtained for each of the n=4 ¡ 1 internal break-points

pj .xj / D Dj

pj .xj / D pj¡1.xj /

p0
j .xj / D p0

j¡1.xj /

p00
j .xj / D p00

j¡1.xj /

Additionally, specifying values for the end-points p0.x0/ D D0 and pn=4¡1.xn=4/ D Dn=4 yields a total of
n ¡ 2 equations. Thus, in order to solve for the spline coef� cients, an additional two equations are needed.
Typically, these equations are obtained by specifying the � rst or second derivatives at the two end-points
of the spline. Note that since one explicitly speci� es the values pj .xj / at the break-points, the formulation
in Equation 2 is particularly useful for de� ning interpolating splines.

2.1. B-splines

While the method discussed so far for de� ning cubic splines is easy to understand, it is not the most
� exible or mathematically convenient formulation for many applications. Alternately, one can write a cubic
polynomial in terms of a set of four normalized basis functions. A very popular basis is the B-spline basis,
which has a number of desirable properties. The texts by Rogers and Adams (1990) and Bartels et al. (1987)
give a full treatment of this topic. Once again, the discussion here will be limited to features relevant to this
paper. Most signi� cantly, for the application of � tting curves to gene expression time-series data, it is quite
convenient with the B-spline basis to obtain approximating or smoothing splines rather than interpolating
splines. Smoothing splines use fewer basis coef� cients than there are observed data points, which is helpful
in avoiding over� tting. In this regard, the basis coef� cients Ci can be interpreted geometrically as control
points, or the vertices of a polygon that control the shape of the spline but are not interpolated by the curve.
It can be shown that the curve lies entirely within the convex hull of this controlling polygon. Further,
each vertex exerts only a local in� uence on the curve, and by varying the vector of control points and
another vector of knot points (discussed below), one can easily change continuity and other properties of
the curve.

The normalized B-spline basis can be calculated using the Cox–deBoor recursion formula (Rogers and
Adams, 1990):

bi;1.t / D
(

1; xi · t < xiC1

0 otherwise
(3)

bi;k.t / D
.t ¡ xi/bi;k¡1.t/

xiCk¡1 ¡ xi
C

.xiCk ¡ t/biC1;k¡1.t /

xiCk ¡ xiC1
: (4)

Here, k is the order of the basis polynomials (i.e., for a cubic polynomial k D 4).
The values xi are called knots, where i D 1 : : : n C k. A uniform knot vector is one in which the entries

are evenly spaced, i.e., x D .0; 1; 2; 3; 4; 5; 6; 7/T . If a uniform knot vector is used, the resulting B-spline
is called periodic since the basis functions will be translates of each other, i.e., bi;k.t/ D bi¡1;k.t ¡ 1/ D
biC1;k.t C 1/. See Fig. 1 for an example. For a periodic cubic B-spline (k D 4), the equation specifying
the curve can be written as

y.t/ D
nX

iD1

Cibi;4.t/ for x4 · t · xnC1: (5)

The B-spline basis allows one to write a particularly simple matrix equation when � tting splines to a set
of data points. Suppose observations are made at m time points t1 : : : tm giving a vector D D .D1; : : : ; Dm/T

CONTINUOUS REPRESENTATIONS OF TIME-SERIES DATA 345

FIG. 1. The B-spline basis functions are periodic (translates of one another) when a uniform knot vector is used.
Shown here is normalized cubic B-spline basis (k D 4) with knot vector x D .0; 1; 2; 3; 4; 5; 6; 7/T . Using the four
basis functions shown, the B-spline will be de� ned only in the shaded region 3 · t · 4, where all four overlap.

of data points. We can then write the matrix equation D D SC, where C is the vector of n control points
and S is a m by n matrix where [S]ij D bj;4.ti/. If n D m (the number of control points equals the
number of data points), then S is square and the equation may be solved by matrix inversion, yielding
an interpolating spline. However, as discussed, this may lead to over� tting, and it is often desirable to
use fewer control points than data points to obtain a smoothing or approximating spline. In this case, the
matrix equation must be solved in the least-squares sense, which yields C D .ST S/¡1ST D.

3. ESTIMATING UNOBSERVED EXPRESSION VALUES AND TIME POINTS

In order to obtain a continuous time formulation, we use cubic B-splines to represent gene expression
curves. As mentioned above, by knowing the value of the splines at a set of control points in the time
series, one can generate the entire set of polynomials from the B-spline basis functions. In our formulation,
the spline control points are uniformly spaced to cover the entire duration of the dataset. Once the spline
polynomials are generated, we can resample the curve to estimate expression values at any time points.
When estimating these splines from expression data, we do not try to � t each gene individually. Due to
noise and missing values, such an approach could lead to over� tting of the data and may in general lead
to estimates that are very different from the real expression values of that gene (see Section 6.1). Instead,
we constrain the spline coef� cients of coexpressed genes to have the same covariance matrix, and thus we
use other genes in the same class to estimate the missing values of a speci� c gene.

3.1. A probabilistic model of time series expression data

In this section, we follow a method that is similar to the one used by James and Hastie (2001) for
classi� cation. However, unlike their work, in this paper we focus on gene speci� c aspects rather than
the common class pro� le. This allows us to handle variations in expression levels that are caused by
gene-speci� c behavior.

A class is a set of genes that are grouped together using prior biological knowledge or a clustering
algorithm. In this section, we assume that class information is given. We discuss how to deal with cases
in which such class information is not given in Section 4.

346 BAR-JOSEPH ET AL

We represent each gene expression pro� le by a spline curve. For a gene i in class j , Yi.t/ is the observed
value for i at time t . Let q be the number of spline control points used, and s.t/ the vector of spline basis
functions evaluated at time t , with s.t/ of dimensions q by 1. Denote by ¹j the average value of the
spline coef� cients for genes in class j , and by °i the gene-speci� c variation coef� cients. We assume that
°i is a normally distributed vector with mean zero and the class spline control points covariance matrix
0j , which is a q by q matrix. Denote by ²i a random noise term that is normally distributed with mean 0
and variance ¾ 2. According to this model, Yi.t/ can be written as

Yi.t / D s.t/.¹j C °i/ C ²i :

This model includes both gene-speci� c and class-speci� c parameters. This allows us to use information
from other genes in the class based on the extent to which gene speci� c information is missing. We restrict
the missing values of a gene by requiring them to vary with the observed values according to the class
covariance matrix 0j . Using the class average ¹j and the gene-speci� c variation °i , we can resample gene
i at any time t 0 during the experiment. This is done by evaluating the spline basis at time t 0 and setting
[Yi.t 0/ D s.t 0/.¹j C °i/.

In order to learn the parameters of this model (¹; ° ; 0 and ¾), we use the observed values and maximize
the likelihood of the input data. Denote by Yi the vector of observed expression values for gene i , and
by Si the spline basis function evaluated at the times in which values for gene i were observed. If we
observed a total of m expression values for i in our dataset, then Si is of dimensions m by q . The kth row
in Si contains the spline basis functions evaluated at tk , where tk is the time at which the kth value was
observed. According to our model, we have

Yi D Si.¹j C °i/ C ²i

where ²i is a vector of the noise terms. Note that since we are estimating the spline coef� cients at the control
points, each observed value has an effect related to the actual time it represents. Thus, different experiments
can have different effects on the resulting curve if the expression values were sampled nonuniformly.

For our solution, we assume that the expression values for each gene were obtained independently of
other genes. This assumption is not entirely true since different experimental conditions can affect multiple
genes in the same experiment. However, this simplifying assumption allows for ef� cient computations and
allows us to capture the essence of the results.

There are two normally distributed parameters in our model, the noise term ² and the gene speci� c
parameters ° . Thus, the combined covariance matrix for a gene in class j can be written as

6j D ¾ 2I C S0j ST

where S is the spline basis function evaluated at all the time points in which experiments were carried
out. Given this formulation, determining the maximum likelihood estimates for our model parameters is a
non-convex optimization problem (see James and Hastie [2001]). Thus, we turn to the EM algorithm. If
the ° values were observed, we could have decomposed the probability in the following way:

p.Y; ° j¾ 2; 0; ¹/ D p.Y j¾ 2; 0; ¹; ° /p.° j¾ 2; 0; ¹/;

which translates into the following joint probability:

Y

j

Y

i2cj

1

.2¼/
ni
2 ¾

ni
2

exp

µ
¡ 1

2¾ 2
.Yi ¡ Si.¹j C °i//

T .Yi ¡ Si.¹j C °i//

¶

¢ 1

.2¼/
q
2 j0j j1=2

exp

µ
¡ 1

2
° T

i 0¡1
j °i

¶ (6)

where c is the number of classes and cj is the set of genes in class j . Note that we need to maximize this
joint probability simultaneously for all classes since the variance of the noise, ¾ 2, is assumed to be the
same for all genes.

CONTINUOUS REPRESENTATIONS OF TIME-SERIES DATA 347

This representation leads to the following procedure. We treat the °i’s as missing data and solve the
maximum likelihood problem using the EM algorithm. In the E step, we � nd the best estimation for °

using the values we have for ¾ 2; ¹, and 0. In the M step, we maximize Equation 6 with respect to ¾ 2,
¹, and 0 while holding the °i’s � xed. See James and Hastie (2001) for complete details.

The complexity of each iteration of the EM algorithm is O.q.nCc ¤q// since we estimate q parameters
for each gene and q2 C q parameters for each class.

4. MODEL-BASED CLUSTERING ALGORITHM FOR TEMPORAL DATA

The algorithm described in the previous section allows us to � nd the expression curve for each gene
when the class partitioning is known. Though this information is sometimes available, either from previous
knowledge or from a classi� cation algorithm (Spellman et al., 1998), this is not always the case. In this
section, we describe a new clustering algorithm that simultaneously solves the parameter estimation and
class assignment problems.

Instead of the � xed class model from Section 3, we assume a mixture model. Thus, we can model the
expression vector for gene i in the following way. First, we select a class j for gene i uniformly at random.
Next, we sample °i using class j ’s covariance matrix 0j , and sample a noise vector ²i using ¾ 2. Finally
we construct Yi by setting

Yi D Si.¹j C °i/ C ²i :

In Fig. 2 we present TimeFit, our spline-� tting algorithm that performs class assignment. The number
of desired classes, c, is an input to TimeFit. Initially, all classes are assumed to have the same prior
probabilities, though it is easy to modify this algorithm if one has prior knowledge about the different
classes. TimeFit begins by choosing for each class one gene at random and using this gene as an initial
estimate for the class center (or average of the spline coef� cients). We now treat the class assignments as
the missing variables and iterate using a modi� ed EM algorithm. In the E step, we estimate for each gene
i and class j the probability that i belongs to class j , P .j ji/, using the values we obtained for the rest
of the parameters in the M step. In the M step, instead of Equation 6, we now maximize our parameters

FIG. 2. Estimating the model parameters without class information. The posterior probablilities P .j ji/ can be used
for clustering as described in the text.

348 BAR-JOSEPH ET AL

for each class with respect to the class probability (P .j ji/) as computed in the E step. In addition, we
now treat the °i;j ’s as parameters and � nd their MAP (maximum a posteriori) estimate, which is then used
in the E step. The complete details of this procedure are explained in the appendix. As in the previous
section, TimeFit still increases the likelihood monotonically and terminates when the parameters converge.

When the algorithm converges, for each gene i, we discover the class j such that p.j ji/ D max1·k·c

P .kji/ and assign i to this class. Using this “hard” clustering, when we need to resample gene i’s expression
curve (either for missing-values estimation or for new time points) we use the estimated class j ’s parameters
(°i;j ; ¹j) and continue as described in the previous section.

For TimeFit, the complexity of each iteration of the EM algorithm is O.cq.n C q// since we now
estimate c C cq parameters for each gene.

5. ALIGNING TEMPORAL DATA

The goal of the alignment algorithm is to warp the time scale of one realization of a biological process
into that of another. A set of genes is chosen in which the members are assumed to have the same temporal
pattern of expression (e.g., from prior biological knowledge or clustering methods). A parameterized
warping function is then selected, and our algorithm seeks to produce an optimal alignment by adjusting
the function parameters. Note that although it is possible to align individual genes this is problematic
unless one has suf� ciently high quality data as from replicates or a large number of time points.

Assume that we have two sets of time-series gene expression pro� les, one of which we will refer to as the
reference set. Denote a spline curve for gene i in the reference time series as g1

i .s/, where smin · s · smax .
Here, smin and smax are the starting and ending points for the reference time series, respectively. Similarly,
we will denote splines in the set to be warped as g2

i .t / for tmin · t · tmax . De� ne a mapping T .s/ D t ,
which transforms points in the reference scale into the time scale of the set to be warped. In this paper,
we will discuss a linear transformation T .s/ D .s ¡ b/=a, with a the stretch/squash parameter and b

the translation. However, more complex transformations could be used in our framework. We de� ne the
alignment error e2

i for each gene as

e2
i D

Z ¯

®
[g2

i .T .s// ¡ g1
i .s/]2ds

¯ ¡ ®
(7)

where ® D maxfsmin; T ¡1.tmin/g is the starting point of the alignment, and ¯ D minfsmax; T ¡1.tmax/g is
its end point. The error of the alignment for each gene is proportional to the averaged squared distance
between the curve for gene i in the reference set and in the set to be warped. In order to take into account
the degree of overlap between the curves, and to avoid trivial solutions such as mapping all the values in
the curve to a single point, we divide this error by the time length of the overlap ¯ ¡ ®. Thus, our goal is
to � nd parameters a and b that minimize e2

i . As discussed, we suggest minimizing the error for a set of
genes. We de� ne the error for a set of genes S of size n as

ES D
nX

iD1

wie
2
i : (8)

The wi ’s are weighting coef� cients that sum to one; they could be uniform (1=n) or used for unequal
weighting. For instance, if one wishes to align wildtype time-series expression data with knockout data,
many of the genes’ expression patterns are expected to be unchanged in the two experiments. However, a
subset of the genes may be highly affected. In this case, we want to down-weight the contribution of such
genes, since they are not expected to align well. One way of formulating this is to require that the product
wie

2
i be the same for all genes (the weight will be inversely proportional to the error). From wie

2
i D K ,

we get that ES D nK , and so we can deduce that

wi D
K

e2
i

)
X

i

wi D
X

i

K

e2
i

) K D 1
P

i 1=e2
i

D
ES

n

CONTINUOUS REPRESENTATIONS OF TIME-SERIES DATA 349

since
P

i wi D 1. As before, the objective is to minimize ES , or in this case, equivalently, to maximizeP
i 1=e2

i .
Minimization of ES must be done numerically, since a closed form solution is not possible. In the linear

case presented, we are searching for only two parameters, so we minimize ES directly using standard non-
linear optimization techniques. We use the Nelder–Mead simplex search method (available in the Matlab
package), which does not use gradients and can handle discontinuities. For the linear warping case, the
essential constraints are that ® < ¯ and a > 0. Since the use of a numerical optimization method does not
guarantee convergence to a global minimum, multiple random restarts may be necessary. This leads to an
algorithm with running time O.rmnq2/, in which r is the number of random restarts, m is the number of
iterations for convergence, n is the number of genes in S, and q is the number of spline control points used.

If large numbers of genes are to be aligned, we suggest the following algorithm to reduce the computation
time. Begin by choosing a random subset of � xed size (e.g., 50 genes) and random initial settings for the
warping parameters from a uniform distribution. The minimization procedure is then carried out, and this
process is repeated with a new random choice of warping parameters for a set number of iterations. Upon
termination, the alignment parameters that correspond to the minimum error are chosen. These parameters
are then used as the starting conditions for the ES minimization using the full set of genes. See Section 6.2
for experimental results on how this reduces the running time on gene expression datasets.

6. RESULTS

In this section, we demonstrate the application of our method to expression time-series datasets, showing
results for unobserved data estimation, clustering, and alignment. Most of our results make use of the
cell-cycle time-series data from Spellman et al. (1998). In that paper, the authors identify 800 genes in
Saccharomyces cerevisiae as cell-cycle regulated. The authors assigned these genes to � ve groups that
they refer to as G1, S, S=G2, G2=M , and M=G1. We also analyzed time-series data from an Fkh1/Fkh2
knockout experiment done by Zhu et al. (2000). Table 1 summarizes the data sets that we used.

6.1. Unobserved data estimation

To test our missing value estimation algorithm we concentrated on the cdc15 dataset. We chose this
dataset (see Table 1) because it is the largest (24 experiments) and contains nonuniformly sampled data.
The results presented in this section were obtained using splines with seven control points; however, similar
results were obtained for different numbers of control points (results not shown).

We compared our algorithm to three other interpolation techniques that have been used in previous papers:
linear interpolation (Aach and Church, 2001), spline interpolationusing individual genes (D’haeseleer et al.,
1999), and k-nearest neighbors (KNN) with k D 20, which achieved the best results on static data out of
all the algorithms described in Troyanskaya et al. (2001). In order to test our algorithm on a large scale,
we chose 100 genes at random from the set of cell-cycle regulated genes. For each of these genes, we ran
each estimation algorithm four different times, hiding one, two, three, and four consecutive time points,
while not altering the other genes. Next, we computed the error in our estimations when compared to an
estimate of the variance of the log ratios of the expression values (see the appendix for complete details).

Figure 3(a) shows a comparison of the error of our estimation algorithm with the three methods mentioned
above. For our method, we performed two separate runs. In the � rst, we used the class information provided

Table 1. Summary of Gene Expression Time Series Analyzed

Data set Method of arrest Start End Sampling

alphaDS Alpha mating factor 0 m 119 m Every 7 m
cdc15DS Temp. sensitive cdc15 mutant 10 m 290 m Ev. 20 m for 1 hr, ev. 10 m for 3 hr,

ev. 20 min for � nal hr
cdc28DS Temp. sensitive cdc28 mutant 0 m 160 m Every 10 m
Fkh1/Fkh2DS Alpha mating factor 0 m 210 m Ev. 15 m until 165 m, then after 45 m

350 BAR-JOSEPH ET AL

FIG. 3. Comparison among different missing-value interpolation techniques. (a) Finding missing values and (b) � nd-
ing missing experiments (time points not originally sampled). As can be seen, in almost all cases our algorithm does
better than the others methods.

by Spellman et al. (1998); and in the second, we used the algorithm described in Section 4 to obtain the
class information. For one missing value, our algorithm achieves 10% less error than k-nearest neighbors
(KNN). For two and three missing values, our algorithm achieves lower or equal error rates when compared
with KNN, and it does far better than the two other interpolation techniques. Only when trying to estimate
four consecutive missing values does KNN perform better than our algorithm. However, four consecutive
missing values are unusual in practice, and in almost all cases one does not need to estimate more than two
consecutive values. Interestingly, our algorithm does better when it is allowed to estimate class membership
than it does when the class information is prespeci� ed. This can be attributed to the fact that the � ve classes
from Spellman et al. (1998) are somewhat arbitrary divisions of a continuous cycle. Thus, for missing-value
estimation, our clustering algorithm is able to assign more relevant class labels.

Our algorithm can estimate expression values at any time point during the course of the experiments. In
Fig. 3(b) we present results that were obtained by hiding one, two, three, and four consecutive experiments.
Again, our algorithm achieves more than 15% less error than do the other two techniques. Note that KNN
cannot be used to estimate missing experiments, and thus is not included in this comparison.

6.2. Clustering

In order to explore the effect that nonuniform sampling can have on clustering, we generated two
synthetic curves as follows. The � rst curve, f1, is obtained using the equation f1.x/ D sin x. The second
curve is given by the following equation:

f2.x/ D

(
sin x : x · ¼

sin x C .x ¡ ¼/=.20¼/ : x > ¼:

We sampled each curve 64 times between ¡¼ and ¼ and then sampled between ¼ and 5¼ (the remaining
portion of the curve) at different rates of either every ¼; ¼=2; ¼=4, or ¼=16. Note that since all curves
were sampled between ¡¼ and 5¼ , the maximal difference between the sampled values (amplitude of
the curves) is at most 0.2. For each different sampling, we generated 100 vectors from each curve and
added random noise (normally distributed with mean 0 and variance 0.2). Next, we used our TimeFit
algorithm and compared the results to those of k-means clustering. K-means is a clustering algorithm that
assumes a mixture model and tries to assign genes to classes using the class centers (see Sharan and Shamir
[to appear] for details). K-means treats all points in the same way and does not use the actual times they
represent. As can be seen in Fig. 4, the lower the sampling rate, the larger the difference between the

CONTINUOUS REPRESENTATIONS OF TIME-SERIES DATA 351

FIG. 4. A comparison between k-means and TimeFit for clustering the vectors from f1 and f2. The success rate
was determined by the total number of correctly clustered vectors out of the 200 vectors. As can be seen, the lower
the sampling rate, the greater the advantage of using our algorithm.

performance of TimeFit and k-means. For example, for the sampling rate of ¼ , k-means does only slightly
better than chance, while TimeFit has much higher classi� cation success.

Next, we tested TimeFit on the cdc15DS described above and compared the results to k-means. For both
algorithms, we generated � ve classes. When analyzing the results, we used the Spellman clusters as the
gold standard and determined how many clusters in our results correspond to these clusters. The results
are presented in Table 2. As can be seen, four out of the � ve clusters that were generated by TimeFit
correspond to Spellmans’ clusters, containing at most two neighboring phases with 10 or more genes (the
� fth contained genes from three consecutive phases). Since we are dealing with cell cycle data, the clusters
de� ned by Spellman et al. (1998) can only have arbitrary boundaries, and thus joining two of them is
reasonable. On the other hand, in the k-means clustering result, cluster 4 contains more than 20 genes from
four different phases, while cluster 5 contains more than 20 genes from three different phases. Thus, the
results of our clustering algorithm are in better correspondence with existing biological knowledge than
those of k-means.

6.3. Alignment

We aligned three yeast cell-cycle gene expression time series that clearly occur on different time scales
and begin in different phases. The cdc15DS was used as a reference set, and the alphaDS and cdc28DS
were aligned against it using a linear warping T .s/ D .s ¡ b/=a and the full set of cell-cycle regulated
genes as identi� ed by Spellman et al. (1998). For the cdc28DS, we obtained a D 1:42 and b D 2:25
with ES D 0:1850. These results indicate that the cdc28DS cell-cycle runs at approximately 1.4 times the

Table 2. Comparison between k-Means and Our Clustering Algoirthm on the cdc15DSa

TimeFit k-Means

Phase/cluster 1 2 3 4 5 1 2 3 4 5

G2/M 121 52 4 0 8 117 6 1 60 1
M/G1 2 62 33 8 1 6 51 3 45 1
G1 0 9 166 40 71 0 24 125 104 33
S 0 1 2 0 65 0 0 3 7 58
S/G2 30 3 4 0 81 18 0 0 22 78

aAs can be seen, in most cases each of the clusters generated by TimeFit contains genes from 1 or 2 neighboring phases. For
k-means, there is one cluster (4) that contains more than 20 genes from 4 different phases.

352 BAR-JOSEPH ET AL

speed of the cdc15DS cycle and starts approximately 5.5 minutes before (i.e., we calculate T .10/ since
cdc15DS starts at 10 minutes). For the alphaDS, we obtained a D 1:95 and b D ¡5:89 with ES D 0:1812.
Fig. 5 shows the aligned/unaligned expression values for the G1 and S=G2 clusters for the cdc28DS to
cdc15DS alignment. Alignment for each dataset took approximately 5.5 minutes on a 1 GHz Pentium III
machine using our algorithm that performs initial alignments on smaller subsets of genes; the alignments
took approximately 45 minutes without this improvement. To validate the quality of these alignments,
we performed two analyses: 1) alignments of genes in alphaDS against genes in cdc15DS with the gene
identity of those in cdc15DS randomly permuted and 2) alignments of alphaDS to cdc15DS using different
numbers of genes. Note that for brevity only the alphaDS was used; we chose this dataset because it
is the smallest and presumably demonstrates worst-case results. For the � rst analysis, we performed 200
trials giving ES scores between 0.2562–0.3554, with 50% of the scores lying between 0.2780–0.3129.
These results suggest that the actual alphaDS to cdc15DS ES score of 0.1812 would not arise by a chance
alignment of the genes. For the second analysis, we sampled subsets of between 5–400 genes 100 times
from the full set of cell-cycle regulated genes (Table 3). This analysis shows that the variance in the
parameters decreases as more genes are used and there is convergence to the a and b settings found with
the full set of genes. Interestingly, our algorithm is usually able to � nd the “actual” a and b parameter
settings even when relatively small numbers of genes are used.

Thus, these analyses give evidence that our algorithm can reliably align the cell-cycle datasets. These
results compare favorably with those of Aach and Church (2001) using the same data. In their case, they
found that their actual alignment score was not at a low percentile when compared against alignments
using randomized data (gene values shuf� ed). Further, they indicate that poor results were obtained with
small cluster sizes (an analysis over a wide range of sizes was not presented in their paper). The fact that
our method uses a continuous representation and � ts only two parameters to all the genes helps to explain
its good performance on the cell-cycle data. However, one must be careful in extrapolating these results,
since they are clearly dependent on the underlying dataset.

In a second application of our alignment algorithm, we used our method to discover yeast cell-cycle
regulated genes that appear to be regulated by the Fkh2 transcriptional factor. Zhu et al. (2000) performed
an experiment in which two yeast transcriptional factors (Fkh1 and Fkh2) were knocked out and a time-
series of gene expression levels was measured in synchronized cells. Simon et al. (2001) demonstrated with
a microarray DNA-binding experiment that a set of genes are bound by Fkh2 in wildtype unsynchronized
yeast. We were interested in discovering which genes in this set show altered expression in the knockout

FIG. 5. Alignment of genes for the cdc28DS to cdc15DS. Linear warping was used with the full set of cell-cycle
regulated genes. The left-hand side shows class-averages of unaligned expression values for two clusters. The top
row shows aligned results for the G1 cluster (186 genes) and the bottom row the S=G2 cluster (283 genes). These
results indicate that the cdc28DS cell cycle runs at approximately 1.4 times the speed of the cdc15DS cycle and starts
approximately 5.5 minutes before.

CONTINUOUS REPRESENTATIONS OF TIME-SERIES DATA 353

Table 3. Results of Experiments in Which Random Subsets of
Fixed Size Were Sampled 100 Times and Alignment of

AlphaDS and cdc15DS Were Performeda

Genes a std a b std b

5 1.80 0.42 ¡7.70 16.41
10 1.89 0.21 ¡5.06 21.5
25 1.93 0.10 ¡4.99 7.07
50 1.93 0.13 ¡5.13 9.03

100 1.96 0.03 ¡6.86 2.42
200 1.95 0.02 ¡6.38 1.76
400 1.96 0.02 ¡6.12 1.30

aThe columns are as follows: number of genes used, stretch/squash parameter, standard
deviation of this parameter, offset parameter, and standard deviation of this parameter. This
analysis shows that the variance in the parameters decreases as more genes are used and
there is convergence to the a and b settings found with the full set of genes.

experiments. However, direct comparison of the data from Zhu et al. (2000) and that from Spellman et al.
(1998) is problematic, because the series were sampled at different rates, begin at different cell-cycle
phases, and exhibit different periods.

We used our algorithm to rank � fty-six genes bound by Fkh2 according to the difference in expression
curves of the aligned wildtype and knockout experiments. The nonuniform weighting version of our
algorithm was used to align the datasets using all genes identi� ed as cell-cycle regulated by Spellman
et al. (1998) and the gene alignment error scores e2

i were used for ranking. Figure 6 shows a plot of
the spline expression pro� les of the top four genes with the worst alignment scores and the top four
with the best scores. A poor alignment score indicates that a gene is behaving differently in the knockout
experiment.

The ranking produced by our algorithm appears to yield biologically meaningful results, highlighting
which genes appear to be regulated by Fkh2 and those that are merely bound by it. For instance, all of
the genes with the worst alignment scores shown were determined to be bound by both Fkh1 and Fkh2

FIG. 6. Alignment of Fkh1/Fkh2 knockout data and the wildtype alphaDS. Genes shown are from a set of genes
demonstrated to be bound by Fkh2. Shown are the genes with the four worst (top row) and the best (bottom row) gene
alignment scores. A poor alginment score indicates that a gene is behaving differently in the knockout experiment.
See text for biological interpretation of these results.

354 BAR-JOSEPH ET AL

by Simon et al. (2001), whereas all of the best aligning genes were determined to be bound by Fkh2 only.
This corresponds to biological knowledge indicating that both Fkh1 and Fkh2 are required for regulation
of a number of genes. It is also interesting that among the genes shown with good alignment, three are
bound also by Swi6 and either Mbp1 or Swi4, factors that are likely to work independently of the Fkh
proteins. Further, the genes with poor alignment are known to be bound by Ndd1 and Mcm1 or Ace2 and/or
Swi5. Mcm1/Ndd1 are known to work with the Fkh proteins and are not suf� cient to regulate expression
without them. Ace2 and Swi5 apparently can bind and regulate independently of the Fkh proteins, but
their expression is Fkh dependent.

7. CONCLUSION AND FUTURE WORK

We presented a uni� ed model and algorithms that use statistical spline estimation to represent gene
time-series expression pro� les as continuous curves. Results using our approach on a large yeast cell-cycle
dataset demonstrate that our framework, when used for estimating unobserved time points, clustering, and
alignment of datasets, has substantial advantages over other methods that treat time series as vectors of
points. Overall, we believe that as the analysis of dynamic genetic behavior becomes more sophisticated,
principled model-based methods such as ours will become essential for reconstructing and combining data.

There are a number of interesting extensions that could be made to our work. Experimental biologists
often determine the sampling rate for a time-series experiment based on knowledge about how quickly
gene-expression values change. These assessments often make little use of information that may be gleaned
from previous expression experiments. Our algorithm could be used to � nd the “right” sampling rate for
time-series experiments, which could lead to substantial time/cost savings or improvements in biological
results. Another way of extending this work is to develop a clustering algorithm that uses our alignment
method in order to group genes that show similar kinetic changes between datasets. Another open problem
is developing a principled method for determining the signi� cance of the alignment error in order to
automatically detect genes whose temporal behavior is altered between experiments.

APPENDICES

A. EM algorithm for class assignment

In this appendix we present the details of the EM algorithm that is used in Section 4. We start with the
complete log likelihood given by:

X

i

log

0

@
X

j

Z.j ji/ 1
¾ ni

exp[¡.Yi ¡ Si.¹j C °i;j //T .Yi ¡ Si.¹j C °i;j //=2¾ 2]

¢ 1
j0j j1=2

exp

µ
¡1

2
° T

i;j 0¡1
j °i;j

¶1

A

where j is the class index and ni is the number of observed values for gene i . Z.j ji/ is an (unobserved)
binary indicator variable that assigns each gene to exactly one class.

In the E step we compute the expected values for Z.j ji/

p.j ji/ D E.Z.j ji/jYi/ D
pj e¡.Yi¡Si .¹j C°i;j //T .Yi¡Si .¹j C°i;j //=¾ 2

e
¡ 1

2 ° T
i;j

0¡1
j

°i;j

X

k

pke¡.Yi¡Si .¹k C°i;k//T .Yi ¡Si .¹kC°i;k //=¾ 2
e¡ 1

2 ° T
i;k

0¡1
k

°i;k

In the M step we � rst � nd the MAP estimate for °i;j by setting:

°i;j D .¾ 20¡1
j C ST

i Si/
¡1ST

i .Yi ¡ Si¹j /

CONTINUOUS REPRESENTATIONS OF TIME-SERIES DATA 355

Next, we maximize ¾ 2, ¹, and 0 w.r.t. the class assignment probabilities computed in the E step:

¾ 2 D

X

i

X

j

p.j ji/.Yi ¡ Si.¹j C °i;j //T .Yi ¡ Si.¹j C °i;j / C trace..0¡1
j C ST

i Si/
¡1 C ST

i Si/

X

i

ni

¹j is computed by setting:

¹j D

Á
X

i

p.j ji/ST
i Si

!¡1 Á
X

i

p.j ji/ST
i .Yi ¡ Si°i;j /

!

Then we set 0j to:

0j D

X

i

p.j ji/[°i;j ° T
i;j C . O0¡1

j C ST
i Si=¾ 2/¡1]

X

i

p.j ji/

B. Computing error rates

Here we describe in detail the method we used to compute the error rates of the four different missing
values algorithms discussed in Section 6.1. Denote by Yi.t/ the (hidden) expression values for gene i at
time t , and by [Yi.t/ the estimated values. Denote by m the number of missing (hidden) data points and by
n the number of genes that were used for the test. Denote by v the variance of the log ratios of expression
values. Then the error of an estimation for m missing data points is de� ned as:

errm D 1
mn

nX

iD1

mX

lD1

s
[Yi.tl/ ¡ [Yi.tl/]2

v

If errm is above 1 then the error is (on average) bigger than the replication variance, and vice versa. The
variance v was computed using the raw expression data of the unsynchronized cells from two different
time points.

ACKNOWLEDGMENTS

Z.B.J. is supported by a Fellowship from the Program in Mathematics and Molecular Biology at the
Florida State University, with funding from the Burroughs Wellcome Fund Interfaces Program.

REFERENCES

Aach, J., and Church, G.M. 2001. Aligning gene expression time series with time warping algorithms. Bioinformatics
17, 495–508.

Bartels, R., Beatty, J., and Barsky, B. 1987. Splines for Use in Computer Graphics and Geometric Modeling, Morgan
Kaufman.

Brumback, B., and Rice, J. 1998. Smoothing spline models for the analysis of nested and crossed samples of curves.
Am. Statist. Assoc. 93, 961–976.

Chu, S., DeRisi, J., et al. 1998. The transcriptional program of sporulation in budding yeast. Science 282, 699–705.
Deng, L., Aksmanovic, M., Sun, D.X., and Wu, C.F.J.X. 1994. Recognition using hidden Markov models with poly-

nomial regression functions as nonstationary states. IEEE Trans. Speech and Audio Processing 2, 507–520.
D’haeseleer, P., Wen, X., Fuhrman, S., and Somogyi, R. 1999. Linear modeling of mRNA expression levels during

cns development and injury. PSB99.

356 BAR-JOSEPH ET AL

Eisen, M.B., Spellman, P.T., Brown, P.O., and Botstein, D. 1998. Cluster analysis and display of genome-wide expres-
sion patterns. PNAS 95, 14863–14868.

Eubank, R. 1999. Nonparametric Regression and Spline Smoothing, Marcel Dekker.
Friedman, N., Linial, M., Nachman, I., and Pe’er, D. 2000. Using Bayesian network to analyze expression data.

RECOMB 2000.
Holter, N.S., Maritan, A., et al. 2001. Dynamic modeling of gene expression data. PNAS 98, 1693–1698.
James, G., and Hastie, T. 2001. Functional linear discriminant analysis for irregularly sampled curves. J. R. Stat. Soc.

To appear.
Neal, S.H., and Madhusmita, M., et al. 2000. Fundamental patterns underlying gene expression pro� les: Simplicity

from complexity. PNAS 97, 8409–8414.
Rogers, D., and Adams, J. 1990. Mathematical Elements for Computer Graphics, McGraw-Hill.
Sharan, R., and Shamir, R. To appear. Algorithmic approaches to clustering gene expression data. Curr. Topics Comp.

Biol. To appear.
Simon, I., Barnett, J., et al. 2001. Serial regulation of transcriptional regulators in the yeast cell cycle. Cell 106,

697–708.
Spellman, T. S., Sherlock, G., et al. 1998. Comprehensive identi� cation of cell cycle-regulated genes of the yeast

Saccharomyces cerevisia by microarray hybridization. Mol. Biol. Cell 9, 3273–3297.
Troyanskaya, O., Cantor, M., et al. 2001. Missing value estimation methods for DNA microarrays. Bioinformatics 17,

520–525.
Viola, P. 1995. Alignment by Maximization of Mutual Information, Ph.D Thesis, MIT AI Lab.
Watt, A., and Watt, M. 1992. Advanced Animation and Rendering Techniques, Addison-Wesley, Reading, MA.
Zhao, L.P., Prentice, R., and Breeden, L. 2001. Statistical modeling of large microarray data sets to identify stimulus-

response pro� les. PNAS 98, 5631–5636.
Zhu, G., Spellman, T. S., et al. 2000. Two yeast forkhead genes regulate cell cycle and pseudohyphal growth. Nature

406, 90–94.

Address correspondence to:
Ziv Bar-Joseph

MIT Laboratory for Computer Science
200 Technology Square
Cambridge, MA 02139

E-mail: zivbj@mit.edu

