
Attribute Support for Inter-Domain Use

Abstract

Mary Ellen Zurko
Laboratory for Computer Science

Massachusetts Institute of Technology and
Digital Equipment Corporation

Littleton, MA, 01460

This paper describes the User Attribute Service
(UAS), a tool providing the stomge and management
of application-specific per-user security attributes for
applications running in a distributed environment.
The UAS provides for the security and integrity of
attribute-to-user bindings, as well as the secrecy of
those bindings, if the application or user requests it.
Four goals of the UAS are support of Least Privilege,
local control and autonomyl instantiation of trust re-
lationships, and psychological acceptability. Mecha-
nisms t o group and enable privilege attributes support
the Least Privilege principal at the user request level.
Functions are designed to enhance the usability of the
UAS within and across domains by atiribute holders
and security managers.

1 Introduction

Due to the limited pool of trust technology engi-
neers [NRCSl], there is a need for building blocks or
tools to support authorization in a distributed world.
Our research concentrates on the use of attributes
by distributed applications. Most applications asso-
ciate information, called attributes, with user iden-
tities. Attributes provide a way for applications to
rapidly identify classes of users. Attributes defined
by an application are termed application-specific. At-
tributes associated with a user's identity are termed
per-user attributes. Attributes used as input to autho-
rization decisions concerning a user are called security
attributes. This paper will discuss application-specific
per-user security attributes, and will use the simple
term attributes to refer to them.

I70

1.1 Distributed World Model

In our basic model of the world, application in-
stances (called applications throughout) use attributes
in their authorization decisions. Applications are as-
sociated with their attributes via a one-to-many map-
ping. Applications are grouped into domains, so that
the universe of application is partitioned into a set
of domains. Each domain has a security manager,
who manages the attributes in the domain. Manag-
ing the attributes entails maintaining the application-
to-attributes association, and granting attributes to
principals, for them to use within the domain. The
association between principals and attributes is many-
to-many. Management and use of any attribute is
bounded by its domain.

When this model is fleshed out with a detailed de-
sign, each principal is identified via an authentication
identity. All the authentication identities of a single
user, and the attributes associated with the identities,
are grouped together to represent the information ap-
plicable to a single user within a domain. Users are
expected to call applications in multiple domains, and
so may hold attributes in multiple domains. The prin-
cipals for a user may be authenticated by diverse au-
thentication authorities. The spheres of the influence
of authentication authorities are orthogonal to the do-
mains that we use to group and manage attributes.

The User Attribute Service (UAS) is the tool which
provides the definition, storage, and management
for application-specific per-user security-relevant at-
tributes in a distributed environment. It provides
the necessary functions for use by three user popu-
lations: applications, attribute holders, and attribute
managers. This paper focuses on the aspects of the
UAS designed to support use between the domains of
distributed applications by attribute holders and at-
tribute security managers.

Authorized licensed use limited to: MIT Libraries. Downloaded on February 11, 2010 at 15:18 from IEEE Xplore. Restrictions apply.

1.2 Goals

There are four main goals of the attribute support
in this paper: Least Privilege, local control and auton-
omy, explicit instantiation of trust relationships, and.
psychological acceptability. We discuss each in turn
below.

1.2.1 Least Privilege

Some attributes consistently authorize the user to per-
form actions otherwise forbidden. These attributes
are called privileges. We call attributes which are
used solely to bar their holder from particular actions
prohibitions. Attributes may be of either, or both,
types. The Principle of Least Privilege [SS751 states
that users should only have available sufficient priv-
ilege to accomplish the task at hand, to reduce the
damage caused by user error or malfunctioning soft-
ware. The UAS provides support for this principle by
allowing users to disable their privileges, while forbid-
ding them to do so with their prohibitions.

Giving users the ability to enable and disable privi-
leges also allows users to exert some control over what
is being said in their behalf. However, this ability in-
creases the burden on the user to use the mechanisms
appropriately. Mechanisms to enhance usability can
ameliorate some of this burden.

.

1.2.2 Local Control and Autonomy

We provide two abstractions for local control and au-
tonomy. One, as discussed above, is the enabling and
disabling of privileges. Our other abstraction, dG
mains, provides for local control and autonomy for
applications and their security manager. A domain
contains a set of systems which are willing trust a sin-
gle authority for the infrastructure needed to manage
their Automated Security Policies [Stegl]. A domain
might consist of the systems managed by a cost center
in a company, or a laboratory in a university. These
organizations may have more than one person respon-
sible for implementing all or part of the security pol-
icy, and only have consistent Organizational Security
Policies [Stegl], which define high level issues such as
user privacy and the identification and protection of
sensitive information.

In allowing user-buser delegation of authority in
our system, we consider the conflicting need for 1o-
cal control of attribute holders and security managers.
For example, the same person may take on the role of
both group manager and intimate friend. While many
applications or object owners would allow a different

person standing in as group manager to perform the
actions for a group manager, those relying on the ac-
cessor being their intimate friend will not wish to al-
low delegation. Generally, some privileges and prohi-
bitions are tightly bound to the identity of the holder.
We will see one example of a security policy where
attributes must not be delegatable, for that reason.

1.2.3 Trust Relationships

We divide trust (or distrust) relationships, which re-
quire explicit instantiation, into two categories based
on the relationship between the authorities involved.
The first involves complementary (or cooperating) au-
thorities, where one authority must rely on another to
accomplish its job. For example, the attribute man-
ager must rely on an authentication authority to iden-
tify a principal. Different levels of trust may be ass*
ciated with each authentication authority, either by
some universally recognized objective measure, or by
each attribute manager individually. How much an
attribute manager trusts an authentication authority
will be reflected in how much power (in the form of
attributes) a principal authenticated by the authority
is allowed.

Similarly, the user must rely on an authentication
authority to provide her with an authentication iden-
tity. Having more local knowledge, users may have
different ideas about how much they trust their au-
thenticators.

The second relationship involves similar authori-
ties, where one authority wishes to rely on another to
accomplish the activity entrusted to it. User-to-user
delegation, as mentioned above, is one form. Another
is allowing an attribute manager to offload some por-
tion of its job to another attribute manager, in another
domain (the issue of redundancy within domains is not
considered in this paper). This trust is best conferred
explicitly, in part so that it can be exhibited to secu-
rity managers and users, to make the security policy
visible.

1.2.4 Psychological Acceptabili ty

The final goal, psychological acceptability [SS75], is
approached via user-centered design of security func-
tions and interfaces. It is a prerequisite to the appro-
priate and secure use of the security features by hu-
mans and their artifacts. Attributes themselves pro-
vide a way for applications to provide a mnemonic
name for an aspect of their authorization decisions,
making application security decisions more obvious to
both users and security managers. We also provide

I xo

Authorized licensed use limited to: MIT Libraries. Downloaded on February 11, 2010 at 15:18 from IEEE Xplore. Restrictions apply.

tools to facilitate user customization and help ease
the tension between control and confusion. In that
context, we explore some simple sharing mechanisms.

Grouping objects can also help users make sense out
of complex worlds. Our attribute management ser-
vice provides a variety of grouping mechanisms: users
grouped by attribute, users can group privileges to en-
able, authentication identities are grouped in a record
identifying the user who they represent, attributes are
grouped by their application, and domains group ap-
plications’ security policies.

By grouping security policy information within do-
mains, the user can interact with a limited number
of well-defined places for their security information.
While the domain is a useful unit for security man-
agement, users in a distributed system will also work
across domains. The mechanism that groups enabled
privileges allows users to do so by task, across d e
mains.

1.3 Structure of This Paper

For the examples in this paper, we consider a set
of distributed applications implementing a purchasing
task. Purchasing an item consists of three steps or
procedures: authorizing a purchase order, recording
that the item has arrived, and authorizing payment.
Authorizing payment is itself broken down into two
procedures: writing the check and updating the cash
account. Since our example is a distributed system,
each of the above steps may actually run in a different
domain. In fact, some steps will run in more than one
domain.

The applications supporting the purchasing exam-
ple use the Clark and Wilson model [CW87] for their
access control decisions. The Clark and Wilson model
calls for a certifier for each procedure (called a Trans-
formation Procedure or TP), who verifies that the
TP maintains the integrity of data items (called Con-
strained Data Items or CDIs). Certifiers also grant the
ability t o run their TPs on particular CDIs. Certifiers
are not allowed to run the TPs they verify.

In the next section, we give an overview of UAS
functions, and the communication and key manage-
ment protocol it uses. We then discuss associating a
list of authentication identities with a user’s record, a
basic grouping mechanism. Next we discuss restrict-
ing the use of attributes to particular authentication
authorities; offloading the management of attributes
to a UAS in a foreign domain; and restricting the
use of privilege attributes to particular authentication
identities and augmenting the prohibitions associated
with identities. These abilities instantiate trust re-

lationships between the authorities involved. Finally
we discuss defining Named Attribute Sets which span
domains; and delegating attributes between users.

2 Overview of UAS Functions

Each UAS provides attribute storage and manage-
ment for the set of instantiations of applications which
define its domain. The responsibilities of the secu-
rity manager are divided into two roles. General UAS
operations such as UAS installation, new application
installation, and creating user records are performed
by a UAS security manager. Applications must trust
the UAS and its manager[s], since they can subvert
application security by redefining the applications at-
tributes, and thus altering the database of users and
their attributes. In addition, the UAS allows applica
tions to specify attribute security managers at a fine
granularity. Attribute security managers grant, re-
voke, and view the attributes they manage.

The attribute management tool must maintain the
integrity of the association of attributes to user iden-
tities and, when desired, maintain the privacy of ap-
plication and user information. Attribute holders can
group attributes with Named Attribute Sets (NASs),
and enable and disable the privilege attributes in those
groups. This feature is transparent to the applica
tions; to them, a user either currently holds or does
not hold a privilege.

Attributes may also constrain the user from taking
particular actions. Attributes of this type are called
prohibitions in this paper. They cannot be disabled
by their holders. Not all attributes are purely of one
type or the other. The UAS provides for binatured
attributes, which the application uses as either a priv-
ilege or a prohibition, depending on its policy and the
context, of its use. When an application inquires about
a user’s attributes, a binatured attribute will always
appear in the list of the user’s prohibitions, and will
appear in the list of the user’s privileges if it is enabled.

2.1 User Requests

NASs are associated with a user request by the in-
clusion of a signed Enabled NAS Token (ENT) as part
of the request. An ENT contains:

e

e

e

181

user authentication identity

unique request ID

timeout - a suitably long value makes this al-
most opt ional.

Authorized licensed use limited to: MIT Libraries. Downloaded on February 11, 2010 at 15:18 from IEEE Xplore. Restrictions apply.

0 NAS[s] enabled (may be empty) - the intersec-
tion of the privilege attributes the user holds and
the privilege attributes in the NASs are consid-
ered enabled for the request.

The ENT is signed by the user’s session or dele-
gation key, and sent as part of the request to which
it applies. When an application receives a request, it
passes the request’s ENT to its local UAS as part of
a call asking t o view the attribute holder’s attributes
for that application. The application decides when to
call the UAS for user attribute information. Requests
can be batched for efficiency, if it is appropriate.

2.2 UAS Communication and Keys

UAS communication requires the options of au-
thentication, privacy, and integrity. UAS communica-
tion must be integrity protected and authenticated to
users and applications (and occasionally other UASs)
80 that they may trust the attribute information pro-
vided, and trust that the information in the request
is the information the UAS put there. Node or ap-
plication authentication, such as provided by DSSA
[GGKLSO] or Kerberos tickets [KN91], is required for
UAS authentication.

In return, users, and aome applications, must be
authenticated to the UAS. The UAS trusts its local
aut henticat ion authority to verify the aut hentication
of principals. Each authentication authority will pro-
vide this information via a secure channel, such as a
certificate encrypted with the authority’s private key.
The security of the channel depends on the strength
of the encryption algorithm and key management.

The privacy of requests to UASs is assured via
privacy-encrypted channels. Applications that require
confidentiality of their attribute must be able to com-
municate via these channels. Applications may use
their node’s authentication identity as their own. Ses-
sion keys will be provided by the principal initiating
the request.

The integrity of all information returned by the
UAS, to both users (attribute holders and attribute
security managers) and applications, is protected by a
hash, such as a Message Authentication Code (MAC),
signed by the UAS. Both DSSA and Kerberos provide
such services to assure the integrity of communica-
tions.

3 Associating Principals With a User
Record

In a distributed system, a single user may have mul-
tiple authentication identities. While in some cases
a user may have no need for more than one, their
multiplicity is due to the lack of a single, global au-
thentication authority. We expect this to continue to
be the case, particularly with individuals associated
with multiple organizations. The UAS allows multi-
ple authentication identities to be associated with a
single user record. This feature supports consistent
attributes among a user’s identities, which enhances
the transparency of a user’s security management. If
no further restrictions are applied (see below), a user
may login from any of her authentication identities,
and run the same tasks in the same manner. Any of
a user’s identities can be used to access information
about the user’s attributes.

This feature also allows an attribute security man-
ager to grant privileges and prohibitions to all of the
user’s identities with a single request. Adding a new
authentication identity to a user record grants all the
attributes of that user record to that principal.

Adding and removing authentication identities and
user records can only be accomplished by the UAS se-
curity manager. If the UAS could check that a new au-
thentication identity belonged to the same user as all
other authentication identities in a user record, anyone
could add an identity to a user record without damage.
Such a check might be based on all authentication au-
thorities having a standardized format for the person’s
full legal name and birthdate and place. However,
since adding an identity grants all the record’s privi-
leges to it, it is an extremely powerful and currently
uncheckable operation. As such, it is restricted to the
UAS’s security managers. This is not the most useful
and usable option, since a local UAS security manager
cannot be expected to know a priori if a principal rep-
resents a particular user. She may have to contact the
foreign authentication authority’s manager to verify
the information.

Removing an identity can do damage if an applica-
tion applies fewer or different prohibitions t o a prin-
cipal unknown to its UAS than those associated with
some principal known to its UAS. This is the case with
the Chinese Wall model [BN89], where a user who has
read no information is not barred from reading any
information, while a user that has accessed informa-
tion has restrictions. For security and consistency, re-
moving, like adding, is restricted to the UAS security
manager.

I82

Authorized licensed use limited to: MIT Libraries. Downloaded on February 11, 2010 at 15:18 from IEEE Xplore. Restrictions apply.

Once an authentication identity is added to a user
record, it is known to a UAS, and the UAS will re-
spond to application queries about that identity. This
may occur before the attribute security managers have
a chance to grant attributes, including prohibitions.
This may cause a window when a new user record is
created with its first identity, and it is not sufficiently
restricted via prohibitions. To close this window, the
UAS provides a default template for all new user
records created by the UAS security manager. At-
tribute security managers can give this template each
application’s most restrictive prohibitions, so that no
new user has any access she should not have before
the attribute security manager is able to set up her
attributes properly.

Some sites may also want to recognize all of a user’s
authentication identities as that user under a single
consistent name. This can be accomplished by asso-
ciating a pseudo-identity attribute with a user record,
and associating all of a user’s authentication identities
with that record. The pseudo-identity can be checked
as if it were the user’s identity. It would be fed to the
application for the purposes of authorization. Such an
identity should not be used for auditing or account-
ability. Since the site would probably not want to
allow the user to disable the pseudaidentity, it would
be a prohibition or binatured attribute.

4 Restricting Attributes by Authenti-
cation Authority

The user record grouping, which associates all the
attributes a user holds with all principals that rep-
resent the user, is useful for security management. In
some cases, an attribute security manager may want to
restrict a privilege attribute’s use to the most trusted
authentication authorities, or to associate a prohibi-
tion attribute with particular authentication authori-
ties with loose security management.

In order to discourage fragmentation of a user’s
identities and attributes, the UAS allows an attribute
security manager to restrict an attribute’s use by au-
t henticat ion authorities. Aut henticat ion authority is
the only level of granularity consistently provided by
current distributed authentication services. These au-
thorities may be DSSA Certification Authorities, or
Kerberos servers. Attribute security managers can re-
strict particularly powerful privileges to principals au-
thenticated by authorities with a high degree of trust.

A similar feature in ECMA is the ability to des-
ignate an authentication as strong or weak [ECMSl].

However, attribute security managers might not want
to rely on an authentication authority they view as
untrustworthy to tell them they have provided strong
authentication. Per-authority restriction is not a sub-
stitute for authentication strength testing, since a sin-
gle authority may allow both passwords and smart
cards. However, an attribute security manager may
take a wider range of information into account when
designating the authorities to which an attribute ap-
plies, including the quality of the security tools and
security management at that site.

When an application asks about the privileges en-
abled by an ENT, the list of privileges returned is fil-
tered by the UAS based on the authentication author-
ity of the authentication identity in the ENT. Only
privileges which may be used from that authority are
included. Prohibitions, instead of being explicitly in-
cluded in a list of authorities, are explicitly exempted
from a list of authorities. If an authentication identity
from an authority previously unknown to the attribute
security manager is added to a user’s record, the de-
fault will be fail-safe; the prohibition will apply. A
prohibition not valid for the ENT’s authority is not
returned to the application (unless a mechanism to
allow users to override this is provided). A binatured
attribute require two such lists; one from which it may
be exercised as a privilege, and one from which it is
excepted as a prohibition.

The authentication authority of an ENT is deter-
mined in the process of checking the signature on it.
In the case of DSSA public delegation keys, the princi-
pal’s long-term public key vouches for the principal’s
short-term delegation key, and the principal’s Certifi-
cation Authority vouches for its long-term key.

5 Trusting Foreign UASs to Manage
an Attribute

While the sphere of a UAS is a single domain, the
definition of the scope of the domain of a UAS is ex-
tremely flexible. It is composed of those applications
which call a particular UAS for their attributes. The
number of applications can be very large or very small,
and concentrated or dispersed. Two applications on
the same node may use two different UASs. Perfor-
mance considerations will probably cause most UASs
to be “close” to their applications, when measured in
terms of network performance. Several domains may
want to centralize and share the management of one
or more attributes. The ability to refer to a particular
attribute and its holders in a foreign UAS allows or-

183

Authorized licensed use limited to: MIT Libraries. Downloaded on February 11, 2010 at 15:18 from IEEE Xplore. Restrictions apply.

ganizations to place limited trust in a shared service
for very specific attribute management.

This remote reference is accomplished with an At-
tribute Thanslation. The attribute translation identi-
fies which attributes in a UAS are actually managed
by a foreign UAS. Since the local UAS transfers the s e
curity management of the attributes with translations
to a foreign UAS, only a local attribute security man-

UAS could maintain an exact list of the identities to
which each prohibition applies. Because the coupling
between authentication identities and authorities is
loose, this feature may be confusing and/or practically
unused. Binatured attributes have two lists, one for
privilege identities and one for prohibition identities.

ager can provide or remove its translation. The scope
of trust is well defined; for each translated attribute,
a particular UAS is trusted to provide information
about it for local use. The UAS named in the transla-
tion defines who holds the attribute, as well as other
attribute constraints such as conflicting attributes and
authentication authority restrict ions. For a particular
attribute, the foreign UAS which manages it may in
turn put that attribute on its Attribute Translation
List. Cycles are illegal and disallowed.

7 Named Attribute Sets Across Do-
mains

Named Attribute Sets (NASs) are used to group
and enable attributes across domains as well as across
applications. They provide the distributed task-level
grouping for the user. An NAS may hold attributes
for one or more applications. They also support Least
Privilege by allowing the user to only enable the priv-
ileges needed by the current request.

An NAS in a UAS contains a group of attributes in
6 Associating Attributes with Authen- that domain. Any user may create one. An NAS in a

UAS contains the following information: tication Identity

Attribute holders may further restrict the power
of one of their principals by restricting the privileges
or augmenting the prohibitions associated with its
authentication identity. For each privilege attribute
a user holds, the user may specify a subset of the
user’s authentication identities which may enable that
privilege. This prevents malfunctioning authentic&
tion code from a not-very trustworthy domain from
producing an ENT which enables extremely powerful
privileges. It may also protect the user from mis-
takes. The request to extend or shrink the list of
authentication identities that can enable a privilege
attribute must come from a principal whose authenti-
cation identity may already enable it. The UAS does
not allow an empty list.

Users may also specify authentication identities as-
sociated with a prohibition they hold. This feature
has more limited usefulness. Prohibitions are asso-
ciated with all of the user’s identities except for the
ones from authentication domains exempted from that
prohibition by the attribute’s security manager. At-
tribute holders may override this exemption by speci-
fying those identities in the list of identities associated
with the prohibition. This may be confusing to the
user unless carefully presented because, unlike privi-
leges, prohibitions are associated with authentication
identities not on the list as well as with those on the
list. If a static coupling existed between authenti-
cation identities and authentication authorities , the

0 name of owner

0 users of the NAS

0 attributes locally associated with that NAS

Attributes in a new domain are added to an NAS by
producing a two-way link between the new piece and
any other domain that contains a piece of the NAS.
Thus, an NAS can be thought of as a doubly linked
tree between UASs, where each of the nodes of the
tree is the portion of the NAS in that domain. We
will refer to the piece of an NAS contained in a single
UAS as a node. The two-way links allow operations
on an entire NAS to be started at any domain which
contains one of its nodes.

An additional field is needed in the NAS node def-
inition. An NAS node also contains:

0 neighbor UASs in the NAS

Figure 1 provides a simplified illustration of this
structure. It shows only one attribute per domain,
all attributes of the same type, and no other users
of the NAS besides the owner. The owner and at-
tribute fields of the NAS are represented textually,
while the neighbors of each node are represented by
arrows. More complex NASs will have a variety of
attributes in each domain.

184

Authorized licensed use limited to: MIT Libraries. Downloaded on February 11, 2010 at 15:18 from IEEE Xplore. Restrictions apply.

Domain E:
PAY-FORSUPPLIES:

0wner:TURING
CLERK:
(TP:UPDATECASH-ACCT,CDI:SUPPLIES)

Domain A:

(TP:PAY

owner :TU RING
CLERK:

Domain D:
PAY-FORSUPPLIES:

owner :TURING
CLERK: (TP:CHECK-WRITING,CDI:SUPPLIES)

Figure 1: PAY-FOR-SUPPLIES NAS

7.1 Cross-domain NAS Operations

Users can view the contents of any NAS they can
use by issuing a request to any UAS containing a part
of it. A simple tree walk, using the node at that UAS
as the root, finds all attributes in an NAS, if all rel-
evant UASs are accessible. If some UAS containing
part of the NAS is not accessible, any branch of the
NAS defined through that domain is truncated, and
cannot be viewed. This information is reported to the
user. An entire NAS can be deleted or revoked (see
below) with a single request, via a tree walk.

An NAS, named in an ENT in a request that is still
being processed, can be revoked from that request.
Revoking an NAS from a request has the effect of re-
voking the privileges in that NASI unless any of the
privileges in the revoked NAS are named in another
NAS in the same ENT. The user must be able to name
the request ID and authentication identity in her ENT
to revoke an NAS from it. This can be facilitated by
a tool which keeps a table of outstanding ENTs with
their contents and context. A timeout can also be
specified on the revocation. If specified, the UAS may
remove the revocation from its revocation table. The
timeout provided by the user should be the time after
which the signature on the ENT would no longer be
valid, so that the ENT would be unusable anyway, or
the timeout in the ENT itself, if there was one.

When a user wishes to revoke an NAS from a re-
quest, she merely needs to send the revocation infor-
mation to the UAS holding that NAS. If the NAS is

contained in more than one UAS, the user may send
the revocation to any UAS which contains a piece of
the NAS. The UAS will then forward the revocation
on to the neighbor UASs containing the NAS, who
will do the same, until the revocation has been sent
to all nodes of the NAS. If the user is worried about
the request completing in a particular domain before
the revocation has propagated, she can send the revo-
cation directly to the UAS in that domain. If UASs
containing the NAS are not currently available, the
request for change is resent until it is acknowledged.

Continuing the purchasing example, we show user
TURING using his PAY-FOR-SUPPLIES NAS, in
Figure 2. His request cascades through multiple ap-
plications [So188], as well as multiple domains.

The sequence of actions is as follows:

1. The user TURING runs the PAY TP in Domain
A, passing it the ENT [TURING, PAY-FOR-
SUPPLIES, request-id].

2. PAY passes the ENT in its call to the local
UAS, requesting all CLERK and CERTIFIER at-
tributes with PAY in them.

3. PAY receives the at-
tribute (TP:PAY CDI:supplies), and authorizes
the run.

4. PAY calls the CHECK-WRITING T P in Domain
C, including the ENT for TURING’S PAY-FOR-
SUPPLIES.

185

Authorized licensed use limited to: MIT Libraries. Downloaded on February 11, 2010 at 15:18 from IEEE Xplore. Restrictions apply.

DOMAIN A DOMAIN C

CHECK-WRITING

Figure 2: Cascaded request with NAS

5 . CHECK-WRITING calls Domain C’s UAS, with for a limited amount of time. This token is called a
the PAY-FOR-SUPPLIES ENT, requesting and Delegated NAS Token (DNT). This delegation token
receiving TURING’S attributes for CHECK- must be signed by the delegater, to prevent tampering
WRITING. and vouch for the delegation. I t is signed with a key of

the user’s which will last at least as long as the dele-
gation, such as a user’s private key in a public/private
key pair. It contains the following information:

0 authentication identity being delegated to.

7.2 Sharing and Copying NASs

According t o Mackay [MacSl], mechanisms for
sharing facilitate user customization. Since the en-
forcement of Least Privilege relies on user customiza-
tion, tools to support this enhance security. authentication identity of the delegater.

Since NASs are the primary structure for cus-
tomization, they can be shared explicitly, or by view-
ing and copying the NASs of others. Explicitly sharing
of an NAS entails placing the users who will share that
NAS on the list of users who can enable it. However,
this places a burden on the owner t o maintain the NAS
for others, which may discourage this form of sharing.

NASs can also be made PUBLIC. This places no
restrictions on who can use the NAS. It has no owner,
and the list of users may be used for informational
purposes only. It can be viewed and copied by anyone.
A copied NAS replicates the attribute and neighbor
information at each node to the new NAS, with the

0 delegation ID. Like the request ID, this uniquely
defines a delegation.

0 time-out for the delegation. As with ENTs, this
provides a timeout on the delegation, as well as
allowing UASs to flush a revoked delegation at
that time.

0 forwardable bit. This bit indicates whether the
delegate is allowed to delegate this token to an-
other user or identity.

0 NAS[s] containing the privileges being delegated

To use the delegation, the delegation token must

list of enabled NASs. If the forwardable bit is set,
the original delegate may delegate one or more of the
NASs in the DNT to some other user. Such forwarded
delegations must be accompanied by a chain of DNTs,
linking the requester back to the original delegater.

For simplicity, the links in the chain must match
exactly. That is, the authentication identity of the
last delegater must match the authentication identity

copier as owner, and an empty users list. As with

tree-walked to send requests for the update to all other
UASs involved.

Other ‘perations (see above), the NAS is be inserted into an ENT of the delegate, after the

8 Delegating to Other Users

A delegation token can be used to allow one user to
delegate a particular set of privileges to another user

I86

Authorized licensed use limited to: MIT Libraries. Downloaded on February 11, 2010 at 15:18 from IEEE Xplore. Restrictions apply.

of the delegate of the immediately preceding delega
tion. In addition, the authentication identity of the
requester must match the delegate in the final DNT
in each DNT chain.

When asked for the prohibitions associated with an
ENT containing DNTs, the UAS will return the union
of the prohibitions of that application held by the del-
egate and the delegater (and all interim delegaters).
Privileges enabled by a DNT must be named in the
NASs of the DNT naming the requester as delegate,
and held by the original delegater.

Privileges restricted to particular authentic at ion
identities may only be delegated by those identities.
This restriction only applies to the first DNT in the
chain. While this allows users to delegate from an
authentication identity which can wield a privilege to
one that cannot, they would only be working around
a restriction they imposed upon themselves.

Privileges restricted to particular authentication
authorities must be used (via an ENT) by a dele-
gate authenticated by one of those authorities, and
the original DNT from the privilege holder must be
signed by a principal authenticated by one of those au-
thorities. Only a delegation with the forwardable bit
set will contain intermediate DNTs whose domains are
not checked. As with discretionary access control, the
attribute holder trusts the original delegate with de-
termining who may subsequently use the delegation.
Only identities authenticated and affiliated with au-
thentication authorities trusted by the attribute’s se-
curity manager may actually make use of the privilege.
Prohibitions work in much the same way; any prohibi-
tions associated with the authentication identity and
authority of the original delegate as added to the pro-
hibitions of the authentication identity who signed the
ENT when an ENT with DNTs is used.

Privileges which cannot be delegated are not re-
turned as enabled even when named in a valid NAS
in a valid DNT. Privileges whose use also involves a
prohibition should never be delegatable. As an exam-
ple, consider an implementation of the Chinese Wall
model [BN89]. Company dataset privileges should
never be delegatable. If they were, a user could make
one ENT containing the delegation to read informa,
tion about a particular company, and another ENT
without the delegation to access information about
some other company in the same conflict of interest
class. The conflict of interest class prohibition on the
delegater would apply to the first legal read with the
DNT, but not the second, now illegal read, of the del-
egate.

9 Conclusion

In this paper we have discussed some of the features
necessary to supporting application-specific per-user
security attributes in a distributed environment. Our
goals were Least Privilege, local control and auton-
omy, explicit instantiation of trust relationships, and
psychological acceptability. The chunking mechanism
of domains eases the problems of understanding, im-
plementing, and remembering security policy for both
security managers and users (attribute holders). It
provides a local association between an application
and its users. However, both user populations will
want to work across domains as well. The UAS pro-
vides security managers with the ability to associate
multiple authentication identities with a single user
record in a domain, and the ability to restrict the use
of both privileges and prohibitions based on the au-
thentication domain vouching for the user’s process.
A local attribute security manager may also delegate
the management of an attribute to a foreign domain.
Attribute holders may further restrict their own privi-
lege use, based on authentication identity, and expand
prohibition use as well. Finally, they are provided with
Named Attribute Sets to group, enable, and delegate
attributes.

Acknowledgments

Discussions with Karen Sollins greatly improved
my thinking on the system’s model and goals. This
research was supported by Digital Equipment Cor-
poration’s Graduate Engineering Education Program
(GEEP). Additional funding was provided by the De-
fense Advanced Research Project Agency, monitored
by the National Aeronautic and Space Administration
under contract No. NAG2-582, and by the National
Science Foundation under grant NCR881418.

References

[BN89] David F.C. Brewer and Michael J . Nash.
The Chinese Wall security policy. In
Proceedings of the 1989 IEEE Symposium
on Security and Privacy, pages 206-214,
1989.

David D. Clark and David R. Wilson.
A comparison of commercial and military
computer security policies. In Proceedings
of the 1987 IEEE Symposium on Security
and Privacy, pages 184-195, April 1987.

[CW87]

187

Authorized licensed use limited to: MIT Libraries. Downloaded on February 11, 2010 at 15:18 from IEEE Xplore. Restrictions apply.

[ECMSl] ECMA. Security
application-authentication and privilege
attribute. April 1991. draft standard.

[GGKLSO] Morrie Gasser, Andy Goldstein, Charlie
Kaufman, and Butler Lampson. The Dig-
ital Distributed System Security Architec-
ture. In Proceedings of the 12th National
Computer Security Conference, pages 305-
319, 1990.

[KN91]

[Mac911

[N RC9 11

[Sol 8 81

[SS751

[%e911

John Kohl and B. Clifford Neuman. The
kerberosTM network authentication ser-
vice. June 1991. INTERNET-DRAFT.

Wendy E. Mackay. Triggers and barriers
to customizing software. In CHI ’91 Con-
ference Proceedings, pages 153-160, 1991.

National Fkarch Council (NRC). Comput-
ers at Risk: Safe Computing in the In-
formation Age. National Academy Press,
1991.

Karen R. Sollins. Cascaded authen-
tication. In Proceedings of the 1988
IEEE Symposium on Security and Pri-
vacy, pages 156-165, April 1988.

Jerome H. Saltzer and Michael D.
Schroeder. The protection of information
in computer systems. Proceedings of the
IEEE, 63(9), 1975.

Daniel F. Sterne. On the buzzword “secu-
rity policy”. In Proceedings of the 1991
IEEE Symposium on Security and Pri-
vacy, pages 219-231, May 1991.

I X8

Authorized licensed use limited to: MIT Libraries. Downloaded on February 11, 2010 at 15:18 from IEEE Xplore. Restrictions apply.

