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Abstract

In packet-switched computer communication networks, a gateway is a device which connects two or more
heterogeneous networks at packet transport level. This paper describes the design and implementation of a gateway,
called the "C-Gateway", at MIT Laboratory for Computer Science. The C-Gateway aims at good real-time
responsiveness, high throughput, and multiple, heterogeneous protocols accommodation, Thus it must resolve the
commonly observed dilemma in network protocol implementations, that is, the conflict between the layer
modularity and system performance. The C-Gateway employs a new system primitive, task (a scheduled procedure
call), which gives fast system responses with a low system overhead, and facilitates the implementation modularity.

1. Introduction

Packet-switched computer communication network's have existed for almost two decades. Today the original
motivations for connecting computers together are strongly pushing towards connections among various networks,
to achieve an even broader range of information and resource sharing. The inter-netwark connections are
accomplished by computers, called 8ateways. Many gateways have been built in the last few years; yet many more
networks are awaiting inter-connections in the near future,

How does one build a gateway? Although much experience has been gained from practice, today there are still
no general rules that one can follow. In this Ppaper we introduce the design and implementation of a typical gateway,
called the C-Gateway (CGW in short). We hope that our experience with building the cGW will help identify general
requirements and design principles of gateway implementations.

Webeginbyspecifyingmegoalsofmeccwdesign,togetherwiﬂlabﬁeﬁngonmeccw’shistoryandcnnem
state; we then proceed with a detailed description on the CGW’s design and implementation, followed by a summary
of our experience,

2. C-Gateway: History and Current Status

2.1. Why Need a Gateway

The CGW was designed and implemented at MIT Laboratory for Computer Science during 1980-1982. The lab
has long been active in the computer networking research. And by the late 1970’s, various types of networks were
running in the lab, with various hosts speaking different protocols. Some of the networks were locally designed and
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implemented, such as a high speed token-ring network and CHAOSnet; some were from external research networks,
such as a number of ARPANET switches (called IMPs, the Interface Message Processor); the rest came from the
commercial market place, such as Ethernets. Among the protocol languages hosts spoke, there were CHAOS
protocol 7], the ARPA Internet Protocol suite (8], and the PUP protocol [1] (a close predecessor of XNS, Xerox
Network System protocol [11]).

As a natural next step, work started on connecting the heterogeneous networks together, to create a multiple
protocol backbone, so that the hosts, no matter what protocols they spoke, could all share the underlying network
hardware for data transmissions. The CGw was designed to accomplish this goal.

IP itost

Ethernet

Figure 2-1: The goal of cow: Sharing network hardware by multiple protocols.

2.2. Design Goals

At packet transmission level, a gateway appears as a host in each network it connects to. But instead of being
the ultimate source or destination of data packets, it forwards packets from one network to another by encapsulation

2. The gateway should be able to connect networks of different types. It should also speak different
protocols at the inter-network layer, to forward packets of different protocol families.

3. It is important that the implementation follow the protocol modularity discipline, so that the system
can easily accommodate the protocol heterogeneity, and provide a flexible configuration frame that
can be easily tailored to a wide range of network environments. The implementation should also be in
a high level programming language, to facilitate the portability and future extensions of the system.

4. Because of the capacity limitations of available hardware at the time, namely the memory space
restriction, the implementation must be small in size,

2.3. Building Blocks _

The C-Gateway is coded in the programming language C, implemented on top of the Micro Operating System
(5], and running on an LSI-11 microprocessor. The selection of the hardware and the system was not a coincidence.
LSI-11 is a small, inexpensive, and widely available machine; more importantly, off-shelf interface hardware for
most of the networks to be connected could be atached to the LSI-11's Q-bus. The MOS was a small, simple



operating system designed for computer network applications. The choice of the C language was due to the
flexibility of the language, the efficient object code, and the availability of a cross compiler.

2.4. Current Status

The cGW design and implementation successfully met all the specified goals. Today there are hundreds of cGws
running in universities, research institutes, and commercial companies all over the United States. At the network
level, the CGW supports ARPANET, Ethemnet, Proteon token ringnet, IEEE 802.5 token ringnet, Corvus Omninet,
and synchronous serial lines; the X.25 protocol is currently being implemented. At the inter-network level, the cGw
now supports the DoD Internet Protocol (TP)! (8], Xerox Network System Protocol (XNS) (11], the DECNET
(Phase IV) routing layer protocol (3], and CHAOSnet Protocol (7). Support to other protocol families, especially
the OSI protocol suite, are also under consideration. As will be seen later, the basic CcGW system frame can

accommodate an arbitrary number of different networks and inter-network protocols.
Inter-network layer
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Figure 2-2: The protocol hierarchy supported by the cow. (being impiemented)

3. C-Gateway Design and Implementation

The MOS system is tiny and simple. It uses a round-robin process scheduling algorithm, with no preemption; all
processes in the MOS run on a single address space. The simplicity alone, however, does not necessarily imply a
good real-time property or high efficiency, as are required by the cGW. In fact we will show next why it does not,
and how the CGW was designed to get around the MOS, in order to achieve the required properties.

3.1. Layering, Modularity, and ‘Performance

A modular implementation is of the first importance for a gateway system; how to make one is the most valuable
lesson we learned through the cow experience. Prior to the cGw design, an prototype gateway was implemented
without modularity consideration. It performs all packet processing functions in a single process, to save the process
switch overhead, and processes each packet in a jumbo single step, starting from the reception till sending the packet
out. Because no urgent event can be handled during this time period (about 4-5 msec), such an implementation
results in poor responsiveness to the bursty traffic in a high speed LAN environment. Moreover, the unstructured
implementation makes it very difficult to configure a gateway system for different network environments, or to add

!The implemented IP protocol module includes IP, ICMP [9], GGP [4], and EGP [6].



in new network protocols.

In general, modular programming is recommended for any system with a non-trivial size; in particular, since
network protocols are specified as being divided to layers [13), implicitly each layer should be implemented as a
distinct module of some sort, so that one can replace a layer with a new implementation without affecting other
layers, so long as the interfaces in between do not change.

The challenge the CGW faces is more than just the layer modularity. In addition to the three protocol layers, the
link, network, and inter-network layers, that a packet transport gateway must implement, at each layer the CGW must
also accommodate multiple protocols, which may use any of the protocols in the neighbor layers. Keeping both the
layer modularity and the protocol modularity is of essential importance, in order to make the CGW easily configure a
specific realization for each different network environment, and easily accommodate environmental changes.

A modular protocol implementation is easier said than done, however. Past experience has shown that it is
difficult to achieve a good protocol layer modularity and a high efficiency at the same time {2], because neither of
the two primitives commonly provided by the operating system, viz procedures and processes, can be used as a
proper module to implement protocol layers.

It is not feasible to implement the protocols and layers as procedures, due to several reasons. First, procedures
do not provide any means by which a layer can run except when being called, while a protocol layer normally has its
own activities independently from other layers, for example the network layer protocol may need to generate routing
update messages periodically. Second, a procedure caller must suspend its own execution until the call is returned,
however this may degrade its real-time responsiveness. Furthermore, a called procedure, after the execution, returns
to the caller, whereas a protocol layer, after running, may want to activate some layer other than the one who called.
For instance, assuming that a network input handler calls the internet forwarder to forward a packet, in this case we
do not want the forwarder to retumn to the caller; instead, it is the netwark output handler that should be activated to
take over the packet. A procedure-centric model best fits a hierarchical system, but does not provide a control flow
that matches the packet flow in a gateway.

It is not feasible to implement protocols and layers as processes either, although this is a common approach
taken by most protocol implementations. Processing a single packet usually requires passing it up and down
through several protocol layers, while the process switching always involve a certain amount of system overhead. In
addition, because the MOS employs a non-preemptive process scheduler, if a higher layer protocol is granted the
CPU and runs for a long time period, lower layer processes would be blocked and fail to promptly handle real time
events, such as new packet arrivals, which in turn would result in packet losses. It is possible to modify the MOS
and make processes pre-emptable, but then the added overhead and complexity would, conceivably, reduce the
gateway throughput.

It was clear at the beginning of the CGW design that a new system primitive was needed to resolve the conflict
between the modularity and the performance. What should it be? To find out the answer, we need first to come up
with a good gateway functional model.



3.2. Gateway as an Assembly Line

Imagine the process in a simple way, data packets pass through the gateway in a way similar to products passing
through an assembly line. Packets entering the gateway are Pprocessed at each stage, then dispatched to the next, or
to the outbound channels. In this model, gateway operations are packet-driven: it is packets that flow to each stage
and trigger the operations.
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Figure 3-1: Gateway functional model: an assembly line.

It looks clearer now that the needed primitive should match to the operations on packets. Further, on a real
assembly line operations at each stage go in parallel, while in the gateway all the operations will be performed by
the single CPU. This implies a need for good operation scheduling, for the cow must quickly respond to real time
events, and process them in an order corresponding to each one’s urgency. The cGW introduced task as the basic
packet operation block, as we see next.

3.3. Task - The Basic Component in C-Gateway Implementation
A task is a dynamically generated request to perform a operation on packets; the running order of tasks should be
assigned according to the urgencies of different operations.

The task is implemented as a scheduleable procedure call. The CGW creates a new data structure, called the Task
Block (TB), to bind together all the information needed for running a task, as shown in Figure 3-2.

link ¢ link to next task next —
ink from —
preceding task |___L2SK Priority Task Block

task data

task code pointe——pitask code

(a procedure)

Figure 3-2: A Task Block.

The priorities of tasks are statically assigned according to the different time constraints of events they handle, as
well as the lengths of their runtime. All tasks together create a priority-ordered running request queue. The gateway
always picks up a new task from the head of the waiting queue to run. For the sake of implementational simplicity
and efficiency, tasks are non-preemptable.



To achieve fast responses in a non-preemptable system, the running time of each task must be kept‘short. This
implies that operations with long durations must be cut into smaller pieces. The cGW naturally divides the
operations at the protocol layer boundaries, which both matches the layer modules and gives a fair division of work

in each part. Forwarding a data packet consists of three tasks:

1. network input handling, which checks for network transmission errors, strips off the network header,
and then passes the packet to a proper internet protocol forwarder;

2. internet forwarding, which performs the internet protocol error checking and routing functions; and

3. network output handling, which encapsulates the packet in the out-going network protocol, and turns
the packet over to the device driver.

One task can schedule new tasks while running. When a network input task finishes with a data packet, for
example, it schedules an internet forwarding task to run; or if one is already scheduled, it merely appends the packet
to the packet queue of the forwarding task. The internet task will, in turn, schedule the network output task, so on
and so forth. Packets flow through each task; there is never data copying inside of the cGwW. By analogy, a task
looks very much like an worker on an assembly line: when he finishes his part of the work, the worker wakes up the
person at the next stage, who may have been idle for a while and fallen asleep, to continue on, or if that person is
already busy, then just passes the product to his workbench. The cGW implements all the data packet processing
tasks in one MOS process, named Gateway, to avoid the process switch overhead and scheduling delay completely.

How is a task originally scheduled at the arrival of a real-time event? The CGW introduced handler to bind an
event to the task(s) handling it. A handler is a small subroutine; one handler is written for each possible network
event: [/O completions, transmission errors, etc.; and handlers have a running priority preceding all the tasks. The
MOS system signals I/O events by sending signal messages to processes; each process has a queue of all messages
addressed to it. Whenever its message queue is non-empty, the process Gateway locates and runs the corresponding
handler of each message, which checks and decides whether one or more tasks need be scheduled to process that
message. For example, a packet arrival triggers a MOS signal message to be sent to Gateway; the handler of this
message will then schedule a network input task to run, or add the new packet to the packet queue of that task if it is
already scheduled, or discard the packet if there is a hardware error or a buffer shortage. Gateway keeps looking in
its message queue until all the messages have been handled, then turns to run the scheduled tasks, and will re-check
the message queue after finishing each packet operation.2 All its information about its task queue, handler array,
etc., is kept in its database, Handle-Task, as shown in Figure 3-3.

By introducing the task, the CGW achieves the following desired properties:
1. Because message handling has the highest priority, all event signals are processed as soon as possible.
Even though a newly arrived signal may wait for a running task to finish, all tasks have a guaranteed

short running time (less than a milli-second) by the coding convention.

2. Since the MOS does not order messages by priority, the process message queue is fetched in a FIFO
order, but the messages are processed in a priority order by the prioritized task scheduling.

3. The implementation preserves the protocol layer modularity. Each protocol (at one layer) is a module
of an interface procedure and one or more tasks that fulfill the specific protocol functions; each
protocol layer consists of a set of protocol modules. Inter-layer communications are done through
calling the interface procedures, with data passing through the shared memory space (provided the

2 is possiblethnmemkmyrmforlmg,notbecamoﬁhelongopentimbutbecauseofalong pecket queue to be processed; to avoid
this, the task checks Gateway's message quenc after processing each packet, and reschedules itself if there are new messages.
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Figure 3-3: The message queue and handle-task database of the process Gateway.

MOS) (see Figure 3-4).
add-[P-quH[P-forward internet layer

Handler ptr array

ARPA input Ring output

* * network layer

ARPA input handle h’*i:put restart Ring output

- — — | startl/O start [ O | — -

I | task
D procedure link layer

ARPA input drive ing output drive
P a5k scheduling

—9 procedure call

Figure 3-4: A snapshot of task scheduling and across layer procedure calls upon a
packet arrival, with ARPANET and Ringnet being the inbound and outbound
networks, respectively.

3.4. Supporting Multiple Protocols

The implementation of a gateway is often incremental, in the sense that after the first launch, requests for
supporting more heterogeneous networks and protocols will keep coming continuously, therefore the
implementation will keep growing by adding new networks or protocols. One of the top gateway design goals is a
flexible frame structure; together with a well-disciplined, modular implementation, later modules can then be easily
plugged in to support new protocols.

The CGW was built with such a good system frame. Protocols and layer boundaries are clearly preserved. To
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Figure 3-5: A gateway supporting three local networks and three inter-network protocols,

To forward packets, each network input task determines which inter-network protocol is being used by
examining the protocol field in the packet’s network header; the input task then schedules the internet forward task
of that protocol. The forward task in turn examines the inter-network protocol header of the packet, consults its
routing table to determines the next netwark in the route, and schedules a network-specific output task to forward
the packet through that network.

* System operation; the second step is to outline the basic frame structure of the system; the next decision has to do
with choosing a system primitive that can be used as the building block to implement protocols and layers in a
modular way. In the cGw case, packets passing through a gateway is modeled as products passing through an
assembly line, which shows a packet-flow driven system consisting of a number of operation stages; a new system

Up to now we have discussed the functional aspect of the cow. In the next few subsections we discuss the
packet buffering strategy and programming style of the cGw.



3.5. Packet Buffering in the cGW

A few lessons are learned from the cgw packet buffering strategy. Notice that there potentially exists a packet
queue with every task, although it may be empty most of the time. Recall that all long functions are broken down
into smaller pieces of tasks; each task, because it is scheduled to run rather than running immediately whenever
being called, must have a place to hold its packets temporarily. What is the impact of this buffering?

First, by dividing the packet processing into small tasks, the CGW is able to suspend the current processing at
task boundaries and turn to handle new events. Although the tasking mechanism does not directly increase the
gateway throughput, it achieves a good real-time response with a minimal overhead, for it gets away with the
complexity associated with process switching and pre-emption, as commonly seen approaches for good system
responsiveness. The low overhead boosts the CGW’s high throughput.

Second, as a consequence of suspending the current processing, each task prepares a packet buffering queue,
which resembles the workbench in front of each worker on an assembly line. Tasks are stateless; it is those packet
queues in front of tasks that show the running state of the gateway. By looking at these queues, one can easily find
out where resides the bottleneck operation; and when congestion occurs, decisions on buffer pool management can
be easily made. Incomparison,analtemativewayofbufferingwouldbetoattachonepacketmmemnofatask.
This approach was rejected, because it embeds packets in the tasks, which not only increases task scheduling
overhead (one scheduling per packet per operation), but made it difficult to see the state of the gateway -- one cannot
easily find how many packets there are, or where they are.

Third,thesizeofsysnembufferpoolisacmcialfactorinmegatewayperformance,wpeciallyinanLAN
environment, where the data traffic is highly bursty but has a low average volume. The original implementation on
the LSI-11 processor could provide no more than 20 packet buffers; when data packets flow into the gateway in
bursts, this small pool may overflow easily, resulting in packet losses. Research on network congestion control also
concludes that an adequate buffer space is a necessary condition for effective traffic control [12]. The move to
MC-68000 processor is an important step towards further enhancing the CGW functionality and performance.

3.6. Ne_w Data Structures
It is worthwhile mentioning some important data structures and coding conventions in the CGW. We have seen
the structure of the Task Block. Nowletuslookatanoﬂxercoredatastmcmreofmeccvr,meNET.

A NET is implemented with the data type Struct in the C language (as is the Task Block). Compared with other
high level programming languages, C does not have a rich set of data or control structures, nor is it strongly typed.
The data type Struct in C is generally used to contain pure data only. In the CGW implementation, however, Struct
becomesauseﬁ:lmolﬁrbuﬂdingmodularpmgmms. Modelingaprocessoradeviceasanobject,medesign
exploited the idea of so-called object-oriented programming, that is, the CGW binds all the information of an object,
such as data, status, as well as procedures which manipulate the object, together in one block. Object-oriented
programming helps build a clear, simple, well structured, and modular system. It also facilitates efficient parameter
passing -- objects and their operations are passed together so that the receiver can manipulate an object without
knowing its specific representations.

NET is a typical example: it binds an abstract object, a network module, with the operations performed on that
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object, e.g. the driver of the network. There is one NET object for each network, which contains network specific
information: the network drivers, the lengths of input and output queues (at the driver layer), pointers to packet
queues at the network layer, the netiwork status, statistical information, and so on. In the cGw, object types are
generic, such as NET, while realizations of objects are specific, such as ProNET and Ethernet, which are very
different. Objects of the same type are bound with different operations by using the procedure pointer feature of
C. All the major structures in the CGW are coded in the similar way.

3.7. Library and Code Sharing

The size of the PDP-11 cGW object code, including the MOS system, is about 20 Kbytes, depending on how
many networks and inter-network protocols being supported by a particular gateway realization. Such a small
system size is partly due to careful programming, and partly due to code sharing among different networks. The
CGW builds a subroutine library to resolve the conflict between the desired functionality and the limited memory
space, which was once a serious problem. The library contains commonly used subroutines that perform the bulk of
the network interface handling work, such as allocating/deallocating packet buffers. All networks share the library
code together: in each NET object, if a pointer to a network-specific subroutine is unspecified, as in most cases, a
corresponding library routine will be used instead. Privatemutinaareeodedo:ﬂyforthespecialfeaunesof
individual networks.

Although the adequate memory space is no longer an issue today, the code sharing library is still considered a
good approach, for it reduces the amount of programming needed for adding new network protocols.

4. Summary

A gateway’s basic function is to forward data packets across network boundaries. This function, although
sounds simple, is not easily accomplished. The CGW is to operate in a high speed LAN environment, and to support
multiple heterogeneous networks and protocols. In the cGW design and implementation, we found it particularly
challenging to achieve good real-time response, high performance, and protocol modularity at the same time, as
required by the CcGW. Our solutions and experience are summarized as follows:

1. The cGW implementation largely avoids the concept of processes; instead, it uses a new system
primitive, the task, to carry out gateway operations. Eliminating process switching overhead helps the

CGW achieve a high throughput. The throughput is 300 packets per second on an LSI-11 machine, and
above 500 packets per second on an MC-68000.

2. The real time responsiveness is of first importance for a gateway running in an LAN environment,
where the data traffic is highly bursty but has a low average volume. The tasking mechanism fits this
uafﬁcfeannewelkitgivaﬁstmsponseswrealﬁmeevmtindependendyﬁunthesystemload
conditions,

3. The CGW achieves real-time responsiveness by limiting task runtime lengths, rather than by the usual
approach of pre-emption mechanism, thereby avoiding the overhead and complexity associated with
the latter.

4.'IheCGWhmakslongpmoessingimosmalltasksinawaycm'espondingtomeprotocollayer
boundaries. Therefore the implementation preserves protocol modularity, and provides a modular
configuration which can be easily tailored to meet a wide range of network environments.
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