Self-Synchronization Phenomena in Computer
Networks
6.892 Project Report

Win Treese

16 December 1992

1 Introdution

There are many anecdotes in the computer networking community describ-
ing inadvertent synchronization of systems on a network. Until recently, this
phenomenon was not investigated in detail, although some authors allude to
the problem, as in the standard for the Routing Information Protocol[4]. In
most cases, once the problem was identified, the algorithms were modified
to avoid synchronization.

This paper considers a particular model of certain network algorithms
that can result in synchronization. We present results from simulation,
experiment, and theoretical analysis of the model. From the simulation
results and analysis, we can make some general statements that characterize
the conditions under which synchronization may occur and how algorithms
may be modified to avoid synchronization.

The analysis of synchronization is not new in other fields, such as physics
and biology. Christian Huygens, who published the first known description
of synchronization in the seventeenth century, observed that a pair of pendu-
lum clocks suspended from a beam became synchronized, even though they
ran at different rates when separated. Since that time, synchronization has
been discovered, analyzed, and sometimes put to use in a number of fields,
including the design of electric generators. Many of these are discussed in
[1]. Synchronization plays an important role in biological systems[6], at
scales ranging from small groups of cells to the behavior of a collection of
individuals.

After beginning the work described here, I became aware of work in
progress by Sally Floyd and Van Jacobson at Lawrence Berkeley Labs|[3);
the presentation here is heavily influenced by that work.

2 The Algorithm

Following [3], we consider a model of Periodic Messages. In this model,
each participating system periodically broadcasts a message to all other
participating systems. The systems behave as follows:

1. Set a timer for T, seconds in the future

2. Actual wakeup occurs at a time drawn uniformly from the interval
(Tp — T+, Tp + T), where T, is a parameter of the system that bounds
the random variation in the wakeup interval.

3. Prepare and broadcast a message to all other participating systems.
This requires T, seconds of time.

4. Process any messages that have arrived during the awakened time,
including the time taken processing these messages. Each message
takes T, seconds to process.

5. Go to to step 1.

Any messages that arrive during the “sleep” period are processed imme-
diately.

This algorithm is an abstraction of several algorithms that have been
implemented for network routers and other network protocols. It is easy
to see why such an algorithm might be implemented: to avoid the over-
head of scheduling and switching contexts, messages are processed while the
manager is already running.

3 Analytical Models

Of the many models that have been analyzed for large collections of inter-
acting oscillators, the simplest[2] is

6= Q5+ Y hij(6; - b, ¢)
i€l;

where 6; is the phase of the jth oscillator. The set of neighbors for the
jth oscillator is denoted by I, hy; describes the coupling between pairs of
oscillators, and € is a parameter representing the strength of the coupling.
Models of this form are often used to describe biological systems, and they
have been specialized to analyze oscillators that are coupled to a set of
nearest neighbors (e.g., linear, ring, mesh), for pools of oscillators in which
each oscillator affects all other oscillators, and a variety of other similar
systems.

From the abstract algorithm described in section 2, we can derive the
following equation describing the behavior of the systems:

éj =w+4 Ri(t) + T‘:Z h(0. - 01)

where:

_[o ifle>T
h(”’)‘{1 if |z| < T,

and @ is the nominal frequency, which is the same for all of the oscillators.
R;(t) is a random value drawn from the interval [~T;,T,]); a new value is
drawn every time time step. Note that the coupling function h(6; — 6;) only
has an effect when two systems broadcast within T, seconds of each other.
This corresponds to step 4 in the algorithm, where incoming messages are
processed before resetting the timer.

Some qualitative aspects of this model are immediately apparent. First,
if we begin with N unsynchronized systems, then the change in phase is
dependent entirely on the random component R;(t), and each system will
be exhibiting a random walk about its initial phase.

If two systems wander within a distance T, of each other, then the cou-
pling effect will contribute to a phase advance. Because R;(t) continues to
affect the phase, it is possible that two synchronized systems will become
unsynchronized. As long as they remain synchronized, however, the phase
advance will cause this “cluster” of systems to “catch up” in phase with
other, unsynchronized systems. When this occurs, the larger cluster will
sweep forward even more rapidly. It is likely that once this process begins,
all systems will eventually be pulled into the cluster. The details of the
evolution of the system, then, depends largely on the random component
R;(t), which affects both how easily clusters form and how easily they break
up. A small magnitude would suggest that clusters are less likely to form,

but are also less likely to break up once they do form. A large magnitude,
on the other hand, implies that clusters may form easily, but break up easily
as well.

4 Simulation

In order to investigate the behavior of this model, I implemented a simulator
in the Scheme programming language (the code for the simulator is included
in appendix A). The simulation results agree qualitatively with those sug-
gested by the analytic model, and with the simulation results reported in
{3].

The parameters used in this simulation, as in [3], were T}, = 121 seconds
and T, = 0.11 seconds. The maximum magnitude of the randomness param-
eter T, was varied over the runs of the simulation. The figures are plotted
with time on the horizontal axis and the “phase” on the vertical axis taken
as the wakeup time of the system modulo T, + T.. Note that the time scale
on the horizontal axis varies from figure to figure in order to better show
the salient details.

Figure 1 shows one run of the simulation for T, = 0.08 seconds. In this
case we see several clusters form; one grows enough that it eventually sweeps
all nodes into the cluster. Other clusters may break apart, before the nodes
are later claimed by the large cluster. This is as we expected, beca.use of the
phase advance caused by the coupling.

Another run of the simulation (figure 2) with the same value of T, demon-
strates that synchronization does not always occur quickly for this value.

If we take T, much smaller, there is little variation in phase, unless two
systems become synchronized. Those synchronized systems, however, are
unlikely to come apart, and sweep the others, as shown in figure 3, where
T, = 0.04 seconds.

Finally, if T, is larger than T, the clusters that form are unstable, be-
cause of the relativly large variation. This is demonstrated in figure 4, where
T, = 0.12 seconds.

The results of the simulation confirm the qualitative expectations from
the analytic model, and they agree in general with the behavior of real
systems that exhibit synchronization.

Simulation Results, Tr = .08

© F——
" s 7
—— {/ .
o o, MRS PR
% 5000 10000 15000 20000 25000

Time

Figure 1: T, = 0.08 seconds

Simulation Results, Tr = .08

140
120 2= pempl o Fomn
v S ™ Al
e ~]
w“m
L ==

50 e AT v -
— vt w
al rvem
" e S—
- A — T
r " 2 > Y
c 'S ~ae A -
10000 20000 30000 40000 50000

Tize

Figure 2: T, = 0.08 seconds

o Simulation Results, Tr = .04
120
) o s
_ﬁ.
s F 4
/
: 7
© - :
al |
* 25000 30000

15000 20000

Time

Figure 3: T, = 0.04 seconds

Phase

Simulation Results, Tr = .12

1opm e=mpl e
ULt sy 5
“ d Ayt
A 1-—--I. A .
ﬂi—-—-—*-u.;_ " = —
R — e g —t——
e
Pl T s ™
———
o A =
20000 %0000 0000 100000 120000

Figure 4: T, = 0.12 seconds

5 Experimental Results

In addition to the simulation, I implemented the algorithm described above
to run on a set of workstations on an Ethernet. At this time, a few short
runs of this program has not demonstrated strong synchronization behavior.
Some work remains to ensure that the implementation correctly implements
the model, however, and the runs should extend over a longer period of time.

6 Discussion

The algorithm presented here is an abstraction of the algorithms that might
be used in designing a standalone network router. There are two obvious
techniques for avoiding the synchronization problem. First, the timer could
be reset immediately upon wakeup, rather than after the processing. This
is a particularly efffective technique, because it removes the coupling from
the system entirely. In some systems, however, this change may be difficult,
or it may cause a degradation in performance. An alternative is to inject
some randomness into the timer. For the model described here, this has the
effect of increasing T,. From the simulations, it is clear that a sufficiently
large value for T, relative to T, will make synchronization unlikely. On the
other hand, an insufficient T, may encourage synchronization.

While the model of Periodic Messages as described above captures the
essence of the synchronization phenomenon in this system, there are some
issues in using the results for implementations. For example, the noise com-
ponent, bounded here by Ty, is likely to be drawn from a normal distribution
rather than a uniform one. This makes it harder to be give good rules for
the relationship between T, and T, to avoid synchronization. In addition,
many real systems will not awaken a task before the requested time, so that
phase advances are common, but phase delays are not.

7 Conclusions

We have described a simple network algorithm that shows a strong tendency
towards global synchronization for certain parameter values. Variations of
this algorithm have been implemented for several different systems, notably
network routers. With a better understanding of this phenomenon, it is
straightforward to design algorithms that do not suffer from this undesired
synchronization.

Network algorithms with a strong periodic component are relatively un-
usual in the Internet community now. There is, however, increasing use of
multimedia systems on networks — the audio and video components of which
have do have strong periodic components. From the analysis presented here,
it is unclear how likely synchronization problems with such systems will be.
In particular, the coupling mechanism is somewhat different, so this problem
remains for future work. One possible avenue to explore is the problem of
nearest-neighbor couplings for period traffic through a wide-area network.
A general analysis of this problem can be found in [5].

Another interesting question is whether or not it may be possible to
make profitable use of such synchronization phenomena. It seems unlikely
that this kind of system would be useful for clock synchronization, especially
compared to other known algorithms. On the other hand, it may be that
there are applications for which this kind of synchronization is beneficial.
One possible avenue of work is to take advantage of phase-locking behavior
tolock periodic processes with different phases, so the effects on the network
are spread out in time.

Finally, there may be further applications of the theory of dynamical
systems to the analysis of the local and global behaviors of computer net-
works. Such an analysis might provide a framework for analyzing algorithms
for congestion control and avoidance, flow control, etc.

8 Acknowledgements

Thanks to Dave Clark for suggesting this problem.

References

(1] I.I. Blekhman. Synchronization in Science and Technology. ASME Press
Translations, 1988. translated from the Russian by Eugene I. Rivin.
Russian edition published by Nauka Publishers in 1981.

[2] Hiroaki Daido. Lower critical dimension for populations of oscillators
with randomly distributed frequencies: A renormalization group analy-
sis. Physical Review Letters, 61(2):231-234, 1988.

[3] Sally Floyd and Van Jacobson. The synchronization of periodic routing
messages. Unpublished Draft.

10

[4] Charles Hedrick. Routing information protocol. Internet Request for
Comments 1058, June 1988.

(5] Steven H. Strogatz and Renato E. Mirollo. Phase-locking and critical
phenomena in lattices of couple nonlinear oscillators with random intrin-
sic frequences. Physica D, 31:143-168, 1988.

(6] Arthur T. Winfree. The Geometry of Biological Time. Springer-Verlag,
1980.

A Simulation Code

This appendix contains the Scheme source code for the simulation.

11

(define Tp 121.0) ; Nominal period in seconds

(define Tc 0.11) ; Computation time (seconds)

(define Tr 0.08) ; Random variation in period (seconds)
(define T (+ Tp Tc)) ; Time offset

;5 A sender is represented by an event-time. If it is on the
;5 wait-queue, the time represents when it will wake to send its
;; message. If it is on the busy queue, the time represents when

;3 it will wake up and be done.

; Generate a list of N initial times in the‘interval fo, Tp]

(define (make-simulation n)
(if (= n 0)
()
(cons (* Tp (get-random))
(make-simulation (- n 1)))))

; Top-level: run a simulation with N systems

(define (run-sim n)
(next-step (sort (make-simulation n) <) ’()))))

(define *BIG* (exact->inexact (expt 2 20)))

(define (next-step wait busy)
; Pick next event off of one of the queues
(let ((next-wait (if (null? wait) *BIG* (car wait)))
(next-busy (if (null? busy) *BIG* (car busy))))
(if (< next-wait next-busy)
(let ((x (int next-wait))
(y (mod-T next-wait)))
(graphics-draw-point win x y)
(next-step (cdr wait)
(if (null? busy)
(l1ist (+ next-wait Tc))
(map (lambda (x) (+ x Tc)) (cons next-busy busy)))))
(next-step (sort (cons (next-time next~busy) wait) <)

12

(cdr busy)))))

(define (mod-T t1)
(et ((x (/ t1 T)))

(inexact->exact (round (* T (- x (truncate x)))))))

(define (next-time t1)
(+ t1 (- Tp Tr) (* (get-random) 2 Tr)))

;; Utility procedures
; get a random fraction between O and 1, with resolution res
(define (get-random)

(define res 10000)

(exact->inexact (/ (random res) res)))

(define (int x)
(inexact-Yexact (round x)))

13

