
In Proceedings of IEEE GlobeCom. Rio de Janeiro, December 1999

ADAPTIVE INVERSE MULTIPLEXING FOR WIDE-AREA WIRELESS NETWORKS

Alex C. Snoeren

snoeren@lcs.mit.edu

Laboratory for Computer Science
Massachusetts Institute of Technology

Abstract

The limited bandwidth of current wide-area wireless
access networks (WWANs) is often insufficient for
demanding applications, such as streaming audio or video,
data mining applications, or high-resolution imaging.
Inverse multiplexing is a standard application-transparent
method used to provide higher end-to-end bandwidth by
splitting traffic across multiple physical links, creating a
single logical channel. While commonly used in ISDN
and analog dialup installations, current implementations
are designed for private links with stable channel
characteristics.

Unfortunately, most WWAN technologies use shared
channels with highly variable link characteristics,
including bandwidth, latency, and loss rates. This paper
presents an adaptive inverse multiplexing scheme for
WWAN environments, termed Link Quality Balancing,
which uses relative performance metrics to adjust traffic
scheduling across bundled links. By exchanging loss rate
information, we compute relative short-term available
bandwidths for each link. We discuss the challenges of
adaptation in a WWAN network, CDPD in particular, and
present performance measurements of our current
implementation of Wide-Area Multi-Link PPP (WAMP)
for CDPD modems under both Constant Bit Rate (CBR)
and TCP loads.

1 Introduction

A large number of wide-area wireless access network
(WWAN) technologies have recently emerged, including
Metricom’s Ricochet Packet Radio network, Global
System Mobile (GSM) [13], IS-95 [10], and Cellular
Digital Packet Data (CDPD) [15]. The defining
characteristic of WWANs is their use of a shared channel
with long and variable round-trip times (RTTs), typically
on the order of 500ms, coupled with a relatively low and
variable bandwidth (usually in the tens of Kb/s).
Additionally, many of these wireless technologies support
link-level ARQ schemes for reliable transmission. While

This work was supported in part by Defense Advanced Projects Research Agency
(DARPA) contract number DAAN02-98-K0003. The author is also supported by a
National Defense Science and Engineering Graduate (NDSEG) Fellowship.

such mechanisms provide better line error characteristics,
they combine with channel access contention to introduce
significant delay variability.

The low bandwidths provided by WWAN technologies are
often insufficient to support demanding applications, such
as voice recognition and high-resolution imaging. In these
contexts, one obvious solution is to spread connections
over multiple physical links. By striping data over many
physical channels (called a bundle), possibly by breaking
packets up into fragments, it is possible to present a single
logical channel with increased available bandwidth. When
using such techniques, however, variations in the channel
characteristics of any particular link can have catastrophic
impact on the performance of the bundle as a whole. In
particular, variations in the perceived transmission delay of
an individual member link may cause delays in
demultiplexing and packet assembly. In the absence of
sophisticated scheduling techniques to balance delay,
bandwidth variability between member links can cause the
performance of many transport protocols to be throttled by
the slowest member link, even when traffic is allocated in
proportion to link speeds. Similarly, losses on one link
may prevent packet reassembly, increasing loss rates
markedly. These amplification effects motivate our design
of an adaptive inverse multiplexing algorithm in WWAN
networks. In this paper, we study the Bell Atlantic Mobile
CDPD network, but we believe our work is applicable to
all WWAN technologies, and, more generally, to any
shared links with variable characteristics.

Inverse multiplexing is fairly common in current network
technologies. Most implementations, however, assume
physical transport mechanisms with constant bit rates and
stable link characteristics such as those found in circuit
switched networks [1, 6, 7]. This is not the case with
CDPD. Commercial CDPD networks use an IP-based
transport mechanism such as TCP or UDP to transport
data. These mechanisms are subject not only to the
expected loss and delay characteristics of the Internet, but
additional WWAN-specific issues as well, such as
increased round-trip times and delay variability. The
added synchronization requirements of an inverse
multiplexing scheme only compound any losses or
variability in bandwidth or delay.

Reliable transport protocols require reasonable limits on
packet reordering, jitter, and loss in order to function
optimally. In particular, TCP has been shown to be
extremely sensitive to variations in delay, as they affect
both its ACK-based clock and RTT estimates for packet
retransmission [3, 4, 5]. The Fast Retransmit algorithm
[RFC2001] also makes assumptions about the level of
packet reordering, and induces spurious retransmissions in
the face of excessive reordering. It is therefore important
to ensure that any multi-link scheme limit packet
reordering and delay jitter as much as possible.

The multiplexor must then schedule packet fragments so
that they are received and reassembled in roughly the same
order they arrived, with a minimum of added delay. This
requires balancing the fragment distribution according to
the current bandwidth*delay product of each individual
link. Due to the depth of network queues relative to the
bandwidth*delay product, and channel access asymmetries
inherent in CDPD, it is extremely difficult to obtain
accurate measurements. Instead, we use relative
performance metrics to adjust the traffic distribution
between links, and allow the end-to-end transport
protocol’s bandwidth probing algorithm to function as it
would normally. We term this dynamic adaptation Link
Quality Balancing.

The rest of this paper is organized as follows. Section 2
details related work on improving performance in similar
WWAN environments. Section 3 sets forth the
assumptions made concerning the CDPD network used in
our study. In Section 4 describes the details of our inverse
multiplexing scheme. We examine the factors affecting
TCP performance over multiplexed CDPD links in Section
5, and discuss possible techniques for addressing them.
Section 6 provides details of our sample implementation,
built using the techniques discussed in Sections 4 and 5.
Finally, we present our conclusions in Section 7.

2 Related Work

Many commercially available network devices support
inverse multiplexing using special hardware at the sender
and receiver. The BONDING consortium [6] specifies
techniques for packet striping on 56 and 64kbps circuit
switched channels. More general inverse multiplexing
schemes, as surveyed in [7], often fail to provide fair
bandwidth allocation in the presence of variable size
packets, or introduce significant reordering. The strIPe
protocol [1] addresses these shortcomings, providing a
general mechanism for fair bandwidth allocation with
limited packet reordering, but does not adapt to changing
channel capacity.

Previous work has shown Wireless TCP throughput to be
sub-optimal due to interactions between the link layer and
transport layer protocols. Asymmetry in media access, as
found in CDPD up-channels, causes ACK-compression,
and large delay variations due to a reliable link layer
mechanism conspire to confound the TCP congestion
control mechanisms [5]. While many of these problems
have previously been studied and understood, most
solutions assume a basestation paradigm, where agents are
inserted at the interface between the wired and wireless
links [3, 4]. In a commercial CDPD environment,
however, users do not have access to the Mobile Data Base
Stations (MDBS), and therefore cannot completely control
the buffering, queuing, and retransmission mechanisms
being used.

Inverse multiplexing restores the basestation view, as one
can consider the entire path from multiplexor to
demultiplexor to be one logical link. Traffic shaping and
other known techniques can (and should) be employed,
considering the multiplexor as the basestation. In
particular, we believe split-connection methods similar to
I-TCP [2] may be especially well-suited; there is little
additional benefit to be gained from a transparent agent in
this case, since network connectivity is lost in the event of
a multiplexor failure. By terminating the connection at
both ends, attention can be focused exclusively on the
WWAN portion of the overall path, perhaps utilizing novel
transport protocols specially designed or tuned for
WWANs [9, 11, 14, RFC2488]. Alternatively, mechanisms
such as Snoop agents [4] could be used if a transparent
solution was desired in some particular environment.

Rather than cloud our results with additional factors by
considering various proposals for transport protocols, we
instead use the performance of standard TCP as a
benchmark for our multi-link implementation.
Performance gains achieved through the use of different
transport protocols over individual WWAN links should
transfer directly to our multi-link environment.

3 Assumptions

We assume each of the CDPD links in the bundle traverses
the same wired path. This allows us to remove congestion
control from each individual link and deal with the end-to-
end congestion in totality (see Section 4.2.3). This
assumption is flawed; each CDPD modem in the bundle
may be operating in a separate cell1, so the paths may
diverge at some point. Close examination of the topology
has shown, however, that this point is well within the

1 Bell Atlantic (and, to our knowledge, most present CDPD carriers) deployed its
CDPD network with one dedicated data channel per cell. It is therefore necessary
for each modem to operate in a separate cell to realize any increase in available
bandwidth.

CDPD network itself, and therefore insulated from non-
CDPD cross traffic.

We further assume that the CDPD modems remain
stationary. This is an implementation issue caused by the
standard CDPD channel acquisition algorithm, which
causes each modem to select the “best” channel. Clearly
when they are co-located, roaming causes the modems to
converge to the same channel, competing with each other
for the same bandwidth. We are currently working to
modify the channel selection algorithm to support
mobility.

4 Multi-Link Characteristics

The method used for inverse multiplexing IP packets is
standard. We stripe each packet across some number
(possibly only one) of outgoing links, encapsulating it with
a PPP Multi-Link (ML) header [RFC1990]. The resulting
fragments are then sent using a transport mechanism over
IP to the demultiplexor, where they are reassembled. The
reconstructed packet is then forwarded to the appropriate
destination.

IP

TCP

WAMP

TP

IP

PPP

ML

TP

IP

PPP

ML

IP

WAMP

TP

IP

PPP

ML

TP

IP

PPP

ML

IPIP

TCP

Figure 1: The WAMP Architecture

As can be seen in Figure 1, the end-to-end TCP packets are
fragmented by the multiplexor and tunneled through
multiple CDPD links using ML PPP over a link layer
transfer protocol (TP). An inverse multiplexing strategy of
this type has two main components: a fragmentation and
scheduling mechanism and a transport protocol. In this
section, we examine the possible choices for each, and
discuss how the various alternatives affect reliable
transport performance.

4.1 Scheduling Techniques

Once packets have been fragmented, the multiplexor must
decide how to assign fragments to the available links: that
is when and in what order to transmit them. This problem
is more commonly studied in the inverse, when multiple
links are multiplexed across a single, shared resource. As
noted in [1], however, the problem maps directly to our
situation. The obvious Round Robin approach allocates
fragments amongst all the available links in an ordered
fashion. In the long run, Round Robin scheduling provides
a perfectly fair distribution of fragments. When these
fragments are of roughly the same size, this translates into
a balanced spread of bandwidth.

An entire class of scheduling mechanisms attempts to
compensate for Round Robin’s deficiencies in scheduling
packets of varying sizes. Various fair queuing strategies
select the appropriate link for the next fragment based
upon the fragment’s size and the queue lengths at the
outgoing interfaces (see, for example, [8]). Unfortunately,
many techniques of this flavor require accurate queue
length information, which is difficult to obtain in a CDPD
network. Furthermore, such techniques often lead to
significant packet reordering when used with variable
length packets.

A crucial property of WWANs, and CDPD networks in
particular, is that while all of the links may be physically
identical, their performance at any point in time is highly
variable. Since each modem is operating in a separate cell,
with possibly widely differing signal characteristics, some
variation in channel throughput may be experienced even
in the absence of channel contention. Furthermore, if
additional CDPD modems are operating on some of the
same channels, the link bandwidth available to our
modems is reduced.

We propose a novel scheduling technique, similar to
Weighted Round Robin, based on the ratio of short-term
averages of observed throughput for each of the member
links in a bundle. Link Quality Balancing dynamically
adjusts the MTU of each link in proportion to the available
bandwidth. By splitting packets into fragments that can be
transmitted in roughly the same amount of time by each
link, reassembly can proceed without delay.

In order to ensure traffic is actually distributed as intended,
the fragmentation algorithm fragments each packet to
ensure that the entire MTU of the current link is utilized
before moving to the next link. If the last fragment of the
previous packet did not fully utilize the relative MTU of
the current link, the first fragment of the new packet is
sized to fill the MTU, and scheduled accordingly. Note the
two fragments are actually sent separately, so transmission
of the previous packet is not delayed. In the case of
uniformly sized packets, whose length is a multiple of the
link MTU, this scheduling discipline reduces to Round
Robin for bundles of identically performing links.

4.2 Link Layer Transport

Unlike many traditional multi-link applications, we do not
have exclusive access to the physical links in question.
Instead, we are forced to tunnel data over the Internet to
the CDPD network, where it is sent across the cellular
network to the modems. Empirical evidence shows the
selection of an appropriate transport mechanism is critical
to achieving acceptable performance. The fundamental
design decision is whether to provide reliable transport
and/or congestion control.

4.2.1 Reliability

This can be done through a reliable PPP connection,
perhaps built using Numbered Mode [RFC1663], or by
tunneling PPP over a reliable transport protocol. While
arguments can be made for either choice, we claim an
unreliable mechanism is superior in the multi-link
environment, as it allows us to dispense with link layer
congestion control, and reduces jitter in packet reassembly.

If a reliable transport mechanism is selected for each link,
it requires a congestion control/avoidance scheme, since
retransmitted fragments will travel over the shared Internet
for a portion of their journey. Previous work has shown
introducing an additional retransmission layer below TCP
degrades overall performance [3].

4.2.2 Cached Retransmission

In some cases, however, the path between multiplexor and
demultiplexor may be sufficiently lossy as to benefit from
a Snoop-like [4] scheme to realize the savings of link-layer
retransmission in the absence of a reliable transport
mechanism. In such cases, PPP Numbered Mode
[RFC1663] can be used. The multiplexor already tags
each fragment with a Multi-Link (ML) identifier for
reassembly. We propose to extend it with a hash of the
flow ID and TCP sequence number, allowing the
demultiplexor to associate it with a particular TCP packet
even if reassembly fails. Then, if the end-to-end TCP
requests a packet retransmission, the demultiplexor can
identify exactly those fragments that are necessary to
complete reassembly, and requests only their
retransmission by referencing the Numbered Mode ID.
We term this a Lost Fragment Request, or LFR.

For its part, the multiplexor simply caches each fragment.
It snoops on the return path, observing ACK sequence
numbers. Since TCP only transmits a window’s worth of
data unacknowledged, the amount of data that needs to be
sent before a cached fragment can be verified to have been
safely received is bounded and small. Recall the
bandwidth*delay product of CDPD links is itself small—
on the order of two or three packets. Further study of the
performance impact of LFRs is ongoing work; the results
reported here do not reflect the benefit of fragment
caching.

4.2.3 Congestion Control

If retransmissions are triggered only by the end-to-end
transport protocol (either in the absence of a reliable link
level, or using LFRs as described above), congestion
control is unnecessary at the link level, and is effectively
dealt with by end-to-end transport protocols.

Under our single path assumption, any congested
bottleneck (except the final cell-specific MDBS)
encountered by one link is also traversed by the other

links. When one link receives notice of congestion
(through packet loss), the appropriate response is for all of
the links to respond by reducing their rate. Since loss is
exposed to the upper level transport protocol, the logical
link is determined to be congested, and the transport
layer’s estimate of the available bandwidth is adjusted
appropriately. This adjustment affects all of the links
equally (by equally, we mean in proportion to their
measured throughput as a function of our scheduling
policy).

Care must be taken, however, to ensure one lossy link does
not limit the throughput of the bundle. In the case of
transient Internet congestion, the individual links drop
packets with equal probability. If congestion is occurring
in a particular cell, packet losses will be concentrated on
the associated link. While the individual fragment losses
will indeed cause the end-to-end transport layer to slow,
the demultiplexor records the relative loss rates of each
link. It exchanges this information periodically with the
multiplexor, allowing the scheduler to reduce its usage of
each link in proportion to the estimated available channel
throughput. As the end-to-end transport protocol continues
to probe for bandwidth, the logical link places less demand
on the physical link that previously failed, which leads to
stable behavior.

4.3 Link Quality Metric

The effectiveness of such an adaptive technique hinges on
the selection of a reliable metric for available link
throughput. One approach might be to monitor the queue
lengths at the outgoing interface, similar to weighted or
fair queuing schemes described previously. While
effective for the mobile multiplexor (which is directly
connected to the CDPD modems), this method is
fundamentally flawed if applied at the wired multiplexor.
Recall that packets must first traverse some section of the
Internet before entering the CDPD network. In this work,
we assume the path to every CDPD modem is the same, up
until some point well within the CDPD network (where it
must diverge to reach separate cells). Therefore any inter-
channel variability is only evident in queues far into the
network, and would not be exposed at the local interface.

Instead, we passively monitor each link’s performance
using an extension to PPP’s Link Quality Monitoring
(LQM) standard [RFC1989]. By exchanging information
about the loss rates and perceived throughput of each link,
both multiplexors are able to make an informed and
independent evaluation of channel performance (due to
MAC contention on the cellular up-link and obvious
discrepancies in transmitter power between the modem and
tower, performance may be markedly different in opposite
directions).

0

5000

10000

15000

20000

25000

30000

35000

0 50 100 150 200 250 300 350

T
h
r
o
u
g
h
p
u
t

(
b
i
t
s

p
e
r

s
e
c
)

Time (secs)

Channels
Logical

Modem 1
Actual 1

Modem 2
Actual 2

Modem 3
Actual 3

Modem 4
Actual 4

Figure 2: Link Quality Balancing across four CDPD modems

The obvious metric, as in traditional wired networks, is
loss rate. Figure 2 shows an approximate Constant Bit
Rate (CBR) source transmitting across the WAMP logical
link. Initially the traffic is split equally across all four
available CDPD links. At approximately T+75s, a fifth
modem begins transmitting at a CBR of 6000bps on the
same channel as modem 1. Almost immediately the
throughput can be seen to drop at the demultiplexor. Due
to the deep network buffers, however, no disproportional
loss is perceived until T+125s, when excessive fragment
loss on modem 1 causes the multiplexor to multiplicatively
decrease its utilization of the link by some specified
amount, δ.

The decrease in utilization of link 1 causes a proportional
increase in the use of links 2-4, since the offered load is
steady. The net effect, then, is a multiplicative decrease
whose magnitude depends the utilization of the remaining
links. WAMP continues to decrease its usage of the lossy
link until the error rate returns to within an acceptable
threshold, at which point utilization stabilizes.

At T+325s the CBR source terminates, and bandwidth
utilization on all links drops off proportionately as traffic
decreases. Note that even if the competing CBR source is
removed, relative utilization of link 1 may not increase. If
the remaining links are not saturated (which, in fact, they
are not), and error rates remain tolerable, WAMP has no
incentive to continually probe for additional bandwidth on
link 1. Only when additional load arrives on the logical
link (whether through a new connection or bandwidth
probing of the end-to-end transport protocol), which over-
saturates the remaining links, does WAMP increase
utilization of link 1.

Note that WAMP never actually explicitly increases
utilization of a link. Instead, as it decreases utilization of
congested links, reliance on alternate links increases

proportionately. This allows the end-to-end congestion
control algorithms to operate as designed, without
additional loss caused by bandwidth probing. While
WAMP could generate synthetic traffic with which to
probe links, CDPD networks do not support priority
queuing, so packet loss is uniform. Hence any additional
traffic, synthetic or not, may cause losses in the real
traffic.

0

2000

4000

6000

8000

10000

12000

14000

0 100 200 300 400 500

T
h
r
o
u
g
h
p
u
t

(
b
i
t
s

p
e
r

s
e
c
)

Time (secs)

Channels
Logical

Modem 1
Actual 1

Modem 2
Actual 2

Figure 3: Link Quality Balancing across two CDPD modems

Figure 3 shows a similar experiment using only two links,
which produces a much more dramatic effect. In this
scenario, the CBR source provides an offered load of
13000bps. At T+75s a third modem begins to generate
cross traffic on the same channel as modem 1, using a
CBR stream of 5000bps. The decrease in available
bandwidth becomes noticeable almost immediately, with
the first loss event occurring at T+175s. WAMP then
begins to decrease the utilization as before, leading to
stable long-term behavior.

5 TCP Pathologies

We now turn our attention to the performance of a reliable
transport protocol, TCP in particular, over our Multi-Link
channel. This section identifies the difficulties in adapting
link utilization for TCP flows, and suggests methods for
improvement

5.1 Deep Buffering

TCP adapts to drastic changes in bandwidth by detecting
losses. The assumption is that in the face of sudden
changes in available bandwidth, packets will queue up and
be dropped. Unfortunately, in a CDPD environment with
few flows, the buffers are very deep compared to the
receive windows. So sudden changes in bandwidth are
often not detected by losses, but instead simply space out
the ACKs from the receiver, which slows TCP’s
transmission rate down to the speed of the ACKs.

While TCP’s bandwidth probing algorithm will continue to
increase the window size one packet per (its estimation of
the) RTT (which, as discussed in [3] and [5], is likely to be
much larger than accurate), the decreased rate of ACKs
will cause this to take longer than it should. Furthermore,
the next loss event will occur with a smaller window (since
TCP’s congestion avoidance algorithm converges), so the
network buffers are even more likely to be able to absorb
the excessive traffic for long enough to slow the ACK
clock down.

Figure 4 shows a single TCP sender operating over a
WAMP link with two separate channels. The
characteristic saw-tooth pattern of TCP’s window probing
algorithm is readily apparent. As before, at time T+125s,
an additional modem began sending a CBR flow at 5000
bps on the same cellular channel as modem 2. The drop in
available bandwidth is noticeable almost immediately, as a
loss event occurs, and the saw-tooth turns downward.
Finally, at T+175s the loss rates become disproportionate,
and the multiplexor begins to decrease its utilization of
link 2. Notice this occurs two probing periods later, after
TCP has markedly decreased its sending rate due to the
slower rate of returning ACKs.

0

5000

10000

15000

20000

25000

30000

0 50 100 150 200 250 300 350 400

T
h
r
o
u
g
h
p
u
t

(
b
i
t
s

p
e
r

s
e
c
)

Time (secs)

Channels
Logical

Modem 1
Actual 1

Modem 2
Actual 2

Figure 4: Link Quality Balancing across two links for a single
TCP sender.

As WAMP continues to decrease utilization of the
congested link, TCP can be seen to succeed in trying larger
and larger window sizes. While this process will
eventually converge, due to the stability properties of
TCP’s linear increase, multiplicative decrease congestion
avoidance, it occurs over a very large time span. The
transfer concludes at T+375s with an overall throughput
approximately 85% of the theoretical maximum (if WAMP
had adjusted instantaneously to the available channel
bandwidth).

While this effect disappears rapidly as additional flows are
established (since they are each asymmetrically probing

for additional bandwidth), it is reasonable to assume the
number of simultaneous flows will be small, given the low
link bandwidth. This motivates our search for an alternate
metric that could enable rapid adaptation to changes in
available link throughput, without waiting for the network
queues to admit a loss event.

Even if such a metric existed, considerable control issues
arise when one attempts to make sudden, significant
changes. In order to avoid the TCP problem, the decrease
would have to be significant. Clearly false triggers would
be catastrophic. Furthermore, care would need to be taken
to ensure sufficient time for stabilization before additional
adaptations were made. Relative short-term throughput
averages, inter-packet separation averages, and inter-
packet deviations have all initially proved too unstable for
use. We are continuing to investigate dampening methods
that might allow their use.

5.2 Packet Reordering

Depending on the scheduling policy in use, the top level
TCP stack often may receive packets out of order due to
the relative delay of individual channels. Our study of
individual CDPD links shows that reordering frequency is
similar to that expected in the general Internet [12], but
very rarely by more than one packet.

If, as a general rule, we assume packets will be reordered
at most once on each link, we can then examine the effect
of striping fragments. Some scheduling policies then
admit bounds on reordering. For our modified Round
Robin techniques, reordering on the logical link is clearly
just a function of packet size versus the number of links.

5.2.1 Fast Retransmit Modifications

TCP’s fast retransmit algorithm exists to trigger rapid
retransmission of lost packets. As specified, the receipt of
three or more out of order packets signals packet loss,
causing immediate retransmission. The value of three
DUPACKs was arrived at empirically, and seems to
function well for the wired Internet [12].

In our case, however, we can use any bounds provided by
our scheduling mechanism to modify the retransmit
algorithm. If, for instance, we are guaranteed never
(actually with high probability, based on our assumption
the individual links only reorder by one packet) to receive
more than one out of order packet, we could reduce the
number of DUPACKs to two, thereby causing a faster
retransmission, improving throughput. If, on the other
hand, our scheduling algorithm were such that packets
were regularly delivered more than two packets out of
order, the standard fast retransmit algorithm would
incorrectly assume packet loss and cause spurious

retransmissions. In this case, it is clearly beneficial to
adjust the number of DUPACKs up to the higher value.

Given the large timeout delays caused by not triggering the
fast retransmit algorithm, it may be desirable to be a bit
more aggressive in setting the DUPACK level than one
would be on a wired network. For the purposes of this
paper, however, we choose not to modify the algorithm to
preserve standard TCP semantics.

5.3 Loss Amplification

The major drawback of multi-link operation is that all of
the characteristics of the underlying channel, both positive
and negative, are amplified. Take the case of packet loss
for example. The probability of successful packet
transmission for the logical link, pt, can be expressed in
terms of the loss probabilities for each of the n constituent
links, pi: pt = 1 – (1 – p1)(1- p2)…(1- pn). Splitting a
packet across four links with 10% packet loss probability
results in an incomplete packet 35% of the time. This
lowest common denominator effect becomes increasingly
evident when conditions deteriorate.

This effect implies there exists a point at which a link’s
membership in the bundle detracts from the overall
bundle’s performance. Consider, for example, the case of
three links operating optimally, with one link dropping
packets at a rate of 50% (not unheard of during peak hours
in our CDPD network). Regardless of the retransmission
mechanism used on the lossy link, the added delay caused
by the required retransmission of lost data fragments
causes TCP throughput on the logical link to be lower than
it would be if it just used the three perfect links.

We are already monitoring link quality for use in our
scheduling mechanism, so the data is available. The
difficult part is determining at exactly what point to
remove a link. There are obviously many factors,
including the relative performance of a link to the others in
the bundle, the absolute performance of the link, and so on.
It is not clear how to calculate its exact value on-line.
Instead, we suggest empirically computing a reasonable
default threshold, and basing a link’s membership in the
bundle on that specified value. There is no danger in
setting the value too low, as the resulting performance is
no worse than the unmodified system. Care needs to be
taken, however, not to set the value too high. Determining
the optimum value for this threshold is ongoing work.

6 Implementation

The inverse multiplexor described herein was deployed
using Sierra Wireless MP200 CDPD modems. The
modems are connected via a Specialix SIO serial board to
a PII/400 running FreeBSD 2.2.7. The other end of the
virtual link is a Pentium-class machine running FreeBSD

3.2. This machine connects directly to the Bell Atlantic
CDPD network over a 56K PVC Frame-Relay circuit.

WAMP is implemented as a user-level PPP daemon that
runs PPP [RFC1661] with HDLC framing [RFC1662] over
UDP. The CDPD modems operate on Bell Atlantic
Mobile’s digital cellular network. During initialization,
the mobile multiplexor scans for available CDPD channels,
and allocates the four best channels to the MP200s. Each
modem locks on its prescribed channel, and begins PPP
link establishment negotiation with the wired
multiplexor/demultiplexor.

6.1 Tuning

Several aspects of our inverse multiplexing algorithm
require constants to be set at appropriate values for the
current operating environment.

6.1.1 LQM Interval

The current WAMP implementation exchanges LQM
information every 5 seconds. Each LQM packet is 56
bytes, so this translates to an overhead of ~10 bytes/sec per
link, on the order of 1% of the channel capacity. Shorter
intervals not only increase overhead, but also provide less
stability in the scheduling mechanism. Internet traffic is
by nature bursty. When one considers the typical user’s
traffic on the CDPD network (mail clients, web browsers,
and the like), it can be expected to be especially bursty.
We clearly don’t want to be too quick to predict a link’s
performance.

Given current CDPD speeds, one 576-byte packet (our
MTU) requires on the order of half a second, five seconds
allows for approximately 10 packets to be transmitted
between LQM exchanges. Loss rates become less useful at
lower intervals, as the granularity becomes too coarse.
Furthermore, when multiple flows are active, we are likely
to have significant buffering, so any changes will take
several seconds to propagate through the channel anyway.

6.1.2 Loss Threshold & Decrease Delta

Loss thresholds and decrease deltas must be tightly
correlated if stability is to be achieved. The higher the loss
rate threshold, the slower WAMP adapts to long-term
changes in available throughput. At the same time, it will
be more resilient to transient bursts. Due to the
asymmetric nature of CDPD’s channel access, different
values are required for each direction. For the down
channel, where there is no media contention, empirical
evidence suggests that during off hours, most bursts can be
accommodated in the network and modem buffers, and any
loss exposed to the link layer is significant. For the up
channel, on the other hand, losses are much more common,
due to the CSMA/CD channel access method.

At present, we manually adjust the loss threshold to current
operating conditions, but are investigating methods for
separating load-induced loss with load-independent loss.
We have found thresholds of 2% during evening hours and
5% during peak hours work reasonably well.

Optimum values of the decrease parameter, δ, however,
have proved to be considerably more stable over long time
frames. A decrease factor of .85 is the largest factor that
leads to stable behavior with reasonable reaction times.
While this is a considerably smaller decrease than found in
TCP Reno, one must recall that scheduling is relative.
Hence any decrease in one link leads to an increase in the
others. Small values of δ lead to huge oscillations in link
scheduling, especially when few links are involved, as
well-behaved links are driven into overload by the
increased load caused by the sudden decrease in utilization
of a lossy link.

7 Conclusions

We have presented an adaptive approach to inverse
multiplexing reliable transport protocols in WWAN
environments based upon three key observations. First,
when the component links share a path to the CDPD
network, we note that congestion control is appropriately
and effectively handled by the upper level transport
protocol, and is impeded by additional control at the link
layer. This does not, however, imply the individual links
could not provide some form of enhanced reliability, as
proposed by our LFR scheme.

Secondly, we argue that optimum fragment scheduling
requires knowledge of the current channel characteristics
of each link. By adapting fragment size to the current
effective throughput of each link, we enable packet
reassembly and delivery with a minimum of delay, thereby
preventing slow links from throttling the performance of
the entire bundle.

Finally, while obtaining accurate measurements of
instantaneous channel transmission delay is problematic,
we note that relative channel performance is sufficient,
since the transport protocol’s congestion control algorithm
will appropriately increase or decrease bandwidth
utilization. LQM loss data sent from the receiver at
regular intervals is sufficient to maintain a stable short-
term approximation of relative throughput. Determining
optimum sampling intervals is ongoing work.

8 Acknowledgements

Rusty Hemenway and his colleagues at Bell Atlantic
Mobile provided invaluable assistance in setting up the
experimental testbed. Ty Sealy and Ron Wiken aided in
the installation of the mobile equipment. We are indebted

to John Wroclawski and Hari Balakrishnan for their
constructive criticism and willingness to support this work.

9 References

[1] H. ADISESHU, G. PARULKAR, AND G. VARGHESE. A
Reliable and Scalable Striping Protocol. In Proc.of ACM
SIGCOMM, August 1996

[2] A. BAKRE AND B. BADRINATH. I-TCP: Indirect TCP for
Mobile Hosts. In Proc. of ICDCS, May 1995.

[3] B. BAKSHI, P. KRISHNA, N. VAIDYA, AND D. K. PRADHAN.
Improving Performance of TCP over Wireless Networks.
In Proc. of ICDCS, May 1997.

[4] H. BALAKRISHNAN, S. SESHAN, E. AMIR, AND R. KATZ.
Improving TCP/IP Performance over Wireless Networks.
In Proc. of ACM MOBICOM, November 1995.

[5] H. BALAKRISHNAN, V. PADMANABHAN, AND R. KATZ. The
Effects of Asymmetry on TCP Performance. In Proc. of
ACM/IEEE MOBICOM, September 1997.

[6] Bandwidth ON Demand Interoperability Group.
Interoperability Requirements for Nx56/64 kbit/s Calls,
September 1992.

[7] C. BRENDAN, S. TRAW, AND J. SMITH. Striping within the
Network Subsystem. IEEE Network, 1995.

[8] A. DEMERS, S. KESHAV, AND S. SHENKER. Analysis of a
Fair Queuing Algorithm, Journal of Internetworking
Research and Experience, September 1989.

[9] R. DURST, G. MILLER, AND E. TRAVIS. TCP Extensions for
Space Communications. In Proc. of ACM/IEEE
MOBICOM, September 1996.

[10] Electronic Industry Alliance/Telecommunications Industry
Association. IS-95: Mobile Station-Base Station
Compatibility Standard for Dual-Mode Wideband Spread
Spectrum Cellular System, 1993.

[11] M. MEHTA AND N. VAIDYA. Delayed Duplicate-
Acknowledgements: A Proposal to Improve Performance of
TCP on Wireless Links. Technical Report, Computer
Science Dept., Texas A&M University, February 1999.

[12] V. PAXSON. End-to-End Internet Packet Dynamics. In
Proc. of ACM SIGCOMM, September 1997.

[13] M. RAHNEMA. An Overview of the GSM System and
Protocol Architecture. IEEE Communications Magazine:
31, April 1993.

[14] P. SINHA, N. VENKITARAMAN, R. SIVAKUMAR, AND V.
BHARGHAVAN. WTCP: A Reliable Transport Protocol for
Wireless Wide-Area Networks. In Proc. of ACM/IEEE
MOBICOM, August 1999.

[15] Wireless Data Forum. Cellular Digital Packet Data System
Specification, Release 1.1, January 1995.

