
THE USE OF IP-ANYCAST FOR BUILDING EFFICIENT MULTICAST TREES

Dina Katabi

Massachusetts Institute of Technology
Laboratory for Computer Science

dinaktbi@mit.edu

Abstract

In this paper, we show that substantial improvement in
multicast performance and reliability can be achieved by
regarding a multicast group as a network region and using
anycast to access it along the shortest path. We introduce
the anycast-based tree (ABT), a novel architecture for
building efficient shared multicast trees. ABT is a non-
core tree; thus, it does not suffer from the traditional
problems exhibited by core-based trees, such as traffic
concentration or poor core placement. Moreover, ABT
exhibits greater robustness and lower bandwidth
consumption than other shared multicast trees. Our
simulation shows that ABT reduces traffic concentration
by 60% and decreases average bandwidth consumption by
25%.

In addition, the paper extends the Core based Tree
multicast routing protocol with an ABT mode. The result is
a new intra-domain protocol, called ACBT, that conserves
the desirable features of the original protocol while
reducing bandwidth consumption and alleviating traffic
concentration.

1 Introduction

Early IP multicast protocols were based on Deering’s work
[6] and used source specific shortest path trees. According
to this design, a multicast group builds multiple distribu-
tion trees, each rooted at one of the group’s sources. This
approach is simple and robust but the state information it
stores in the routers scales as O(S*G), where G is the num-
ber of groups and S is the number of senders per group. As
multicast has become more popular, and the number of
potential senders larger, it has become obvious that source-
specific-tree protocols, which spread per sender state, have
severe scalability problems. This has led to the second
generation of multicast protocols, which build one tree per
group that is shared among all senders. Shared trees reduce
the state overhead; however, their bandwidth consumption
depends on the type of the tree built. Ideally, we would like
to build a shared tree that minimizes the bandwidth con-

 This work was supported by Defense Advanced Projects Research
Agency (DARPA) contract number N66001-98-1-8903.

sumed to deliver traffic to all of the group members. How-
ever, building such a tree is an NP-complete problem
widely known as the Steiner Minimal Tree (SMT) [15].

Since building shared SMTs is highly expensive, Wall
suggested the use of core-based shared multicast trees [22].
A core-based tree is a shortest-path tree rooted at a core
router and has the receivers as leaves. The core serves as a
rendezvous point whereby receivers hear from all group
sources, and sources reach all group members. Most of the
shared tree multicast routing protocols, such as the Core
Based Tree protocol (CBT) [2,3] and Protocol Independent
Multicast Sparse Mode (PIM-SM) [9], build core-based
trees.

However, core-based trees exhibit two major deficien-
cies. The first is traffic concentration around the core
[4,21] caused by all senders addressing their packets to the
core of the tree. This phenomenon leads to a high traffic
density around the core router and a threat of congestion.
This problem is exacerbated for high bandwidth groups
especially when they are mapped to the same core router.1

Note that core routers are usually located in the center of
their domains, which makes them critical waypoints for
both multicast and unicast traffic. As such, their congestion
harms all sorts of traffic in a domain: video streams, telnet,
ftp, and many others. Figure 1 illustrates the traffic con-
centration problem.

The second problem is the possibility of a poor core
placement [4,8,23]. Since the core constitutes the only

1 Cores are expected to serve multiple groups since the number of groups
in a domain is usually larger than the number of core routers.

Figure 1: Traffic concentration
 All senders address their packets to the core causing congestion.

Core

Receiver

Router

Sender

Off-tree
link

On-tree
link

S S

SS
S

R R

R

R

R R R

R

point of distribution of traffic to receivers, its ideal location
is in “the middle” of the corresponding group’s members.
However, because the core is chosen independently of the
group’s topology it might reside far from the receivers,
causing the multicast tree to grow unnecessarily larger and
to consume more bandwidth and storage space. Note that
choosing the optimal core for the group is infeasible be-
cause the potential receivers are unknown at the group’s
creation time. Moreover, moving the core dynamically is a
complex and expensive process. Figure 2 illustrates the
poor core placement problem.

In this paper, we propose a novel shared tree architec-
ture called anycast-based tree (ABT). ABT is a non-core
multicast tree; thus, it does not suffer from the above men-
tioned problems. In addition, ABT exhibits lower band-
width consumption and greater robustness than core-based
trees. The paper extends the Core Based Tree multicast
protocol with an ABT mode. The result is a new intra-
domain2 multicast protocol called ACBT, which conserves
the simplicity of the original protocol while reducing
bandwidth consumption and alleviating traffic concentra-
tion.

The next section provides necessary background infor-
mation. Section 3 is a high-level presentation of the de-
sign. In section 4, we explain the details of building and
maintaining an ABT. We discuss both the advantages and
overhead of the ACBT protocol in section 5. In section 6,
we evaluate the design based on our simulation results.
Finally, we discuss related work in section 7, and summa-
rize our work in section 8.

2 Currently, it is widely accepted that multicast routing will have 2 levels
of hierarchy. Locally, a domain runs its choice of an intra-domain multi-
cast protocol such as CBT or PIM. The internal trees are connected
together by an inter-domain protocol such as BGMP (Border Gateway
Multicast Protocol).

2 Background

This section provides a summary of the Core Based Tree
multicast routing protocol (CBT) and IP-anycast.

2.1 The Core Based Tree Multicast Routing Protocol
(CBT)
The Core Based Tree multicast protocol constructs shared
bi-directional trees rooted at a core router [2,3]. An inter-
ested receiver informs its next hop router about its desire in
joining a particular multicast group. The router generates a
join message, which travels towards the core setting up a
transient join state in all the routers it crosses. Eventually,
the join hits an on-tree router or the tree’s core. The router
generates a join ack, which traverses the reverse path of the
corresponding join message guided by the transient state.
When the acknowledgement arrives at the originating
router, the branch is fully established.

2.2 IP-Anycast
IP-anycast is a network service whereby receivers that
share the same characteristics are assigned the same
anycast address. A sender interested in contacting a
receiver with those characteristics sends its packet to the
anycast address and the routers conspire to deliver the
packet to the receiver nearest the sender, where nearest is
defined according to the routing system measure of
distance. Figure 3 illustrates IP-anycast.

Anycast was first introduced in RFC 1546 [21] as a
method for discovering services in the Internet and for
providing host auto-configuration.

An IP-anycast service is available under IPv6 [14]. In
addition, the absence of this service from IPv4 does not
hinder the deployment of our protocol in the current Inter-
net. In fact, IP-anycast does not require any explicit sup-
port from routers. Therefore, a domain can provide an

Figure 3: Illustration of IP-Anycast.
Receiver 1 and receiver 2 are in the same anycast group. If
sender 1 sends a packet to the anycast address the network
delivers it to receiver 1, but if sender 2 sends a packet to the
anycst address the network delivers it to receiver2.

Receiver1

Anycast-
Packet

 Sender2

Anycast-
Packet

Receiver2

 Sender1

Core

Receiver

Router

Sender

Off-tree
link

On-tree
link

Figure 2: Poor core placement
The core is located faraway from the receivers, which causes

the tree to grow unnecessarily large

S S

S

R

R

RRR

anycast service by choosing some unicast addresses to be
used as anycast addresses, assigning them to multiple
nodes, and advertising them using its internal unicast
routing protocol [16,21]. Thus, ABT works correctly in a
domain that does not explicitly support anycast.

3 Idea

The ACBT multicast protocol is engineered to solve the
two major problems exhibited by CBT, which are poor
core placement and traffic concentration around the core
router. The solution relies on the observation that both
problems arise only for high bandwidth groups. Low
bandwidth groups, even when they are mapped to the same
core, do not cause congestion since the total traffic remains
low. Also, the increase in bandwidth consumption caused
by mapping these groups to distant cores is insignificant.
Therefore, using smaller non-core trees for high bandwidth
groups solves both problems. This means we need a new
rendezvous mechanism to replace the core, and we need a
new mechanism that builds smaller distribution trees than
core-based trees. Anycast provides us with both mecha-
nisms.

Our anycast-based trees (ABTs) use anycast to locate a
multicast tree and access it along the shortest path. In fact,
a multicast tree can be viewed as a virtual network region.
By assigning the same anycast address to all on-tree
routers, the entire tree appears to any off-tree router as one
network entity (one node), which can be addressed di-
rectly. As a result, data packets sent to the group travel
along the shortest path connecting a source to the nearest
on-tree router, which minimizes the off-tree part of their
journey. Joins also travel along the shortest path from a
potential member to the nearest on-tree router; therefore,
they build short branches and reduce the size of the tree.
The resultant tree considerably reduces the total bandwidth
needed to deliver the traffic to all members. Moreover, the
access point to a multicast tree is no longer tied to the core
router. Each sender sees the nearest on-tree router as the
access point to the tree, which prevents traffic concentra-
tion on any particular link.

Thus, ACBT is an extension of the CBT multicast
protocol that builds anycast-based trees for high bandwidth
groups and core-based trees for low bandwidth groups.

4 Design Details

In this section we describe the changes made to CBT to
support the establishment of anycast-based trees.

4.1 Building an ABT
The initiator of a multicast session allocates a multicast
address and announces the session with his estimate of the
group’s bandwidth requirement. A designated session
announcement server (SAP server [13]) at an ABT domain
uses the bandwidth estimate to decide whether the group
should build an ABT or a CBT tree. For the case of an
ABT, the designated SAP server acquires an anycast
address and advertises the multicast group accompanied by
its supporting anycast address on a locally scoped
multicast group. Senders and receivers listen to this group
to learn the multicast-to-anycast mapping. The details of
allocating an anycast address depend on the domain’s
implementation of IP-anycast [16].

An ABT uses the group anycast address wherever CBT
uses the core address. In contrast to CBT, where non-
member senders encapsulate their packets and unicast them
to the core, in ABT they encapsulate them in IP packets
destined to the associated anycast address. The intervening
routers deliver them to the nearest on-tree router, which
forwards them on the tree using native multicast.

To join an ABT, a host multicasts on its attached link a
join request, which contains both the group address and the
associated anycast address.3 On receiving this request, a
local router invokes the tree joining process (unless it has
already) which follows one of two possible procedures. In
case the router does not find an entry for the anycast
address in its routing table, it infers that it is the first
member to join this multicast group and it has the
responsibility to initialize the associated anycast group.
Therefore, the router follows a special serialization
mechanism described in section 4.2 to ensure that no more
than one router succeeds in starting the same ABT.

In case the joining router finds the anycast address in its
routing table, the join process becomes significantly
similar to CBT. More precisely, the router forwards the
JOIN_REQUEST to the next hop on the path towards the
anycast group. The join message sets up a transient join
state in the routers it traverses, which consists of <group,
previous hop, next hop, ABT-flag, anycast-address>. The
ABT flag is one bit that differentiates between ABTs and
CBTs. The anycast-address field is used only for ABTs.
Eventually, the join is delivered to the nearest on-tree
router, which sends a JOIN_ACK downstream. The
JOIN_ACK traverses the reverse path of the corresponding
join message, which is possible due to the presence of the
transient join state. The JOIN_ACK causes each router that
has a transient state for the corresponding group with the
ABT flag set to initialize a timer whose expiration causes
the router to start advertising itself as a member of the

3 A new message type can be added to IGMP [11] to enable a
host to join an ABT.

anycast group. The timer, which we call the ANYCAST
timer, decouples the anycast dynamics from the join
dynamics and enables the domain to control the rate of the
anycast updates.4

Once the acknowledgment reaches the router that
originated the join message, the new receiver can receive
traffic sent to the group.

To prove that ABT is loop-free, we assume that the
existing tree does not contain a loop, and prove informally
that a newly added branch does not create a loop. In ABT,
all on-tree routers simulate the role of the core. In other
words, the whole multicast tree shows the same input and
output as a huge core, which has edges connected to all
routers adjacent to the tree. Thus, the establishment of a
new branch in an ABT simulates building the first branch
in a CBT. Thus, if CBT is loop-free then ABT is also loop-
free.

4.2 Serializing the initializations of an ABT
It is possible that multiple routers attempt to initiate the
same ABT at the same time. Thus, there is a need for a
mechanism that ensures no more than one of them
succeeds in its attempt. Any serialization mechanism
solves the problem. For example, a centralized serialization
method based on a serialization server would do.

The solution we recommend is the following: The
initiating router multicasts to the ALL-CBT-ROUTERS
multicast group5 an ABT_INIT message informing the
routers about its intention in starting this multicast-anycast
group. The router waits for a period greater than twice the
domain’s average RTT.6 If it does not hear from any other
router and still has no entry in its routing table for this
anycast address, the router decides that it is the first on-tree
router, declares itself the root for the multicast tree, and
advertises itself as a member of the corresponding anycast
group. On the other hand, if after multicasting the
ABT_INIT message, the router hears an ABT_INIT
multicast for the same group sent by a router with a smaller
IP address, or if the router hears an objection, it fails in its
attempt. A router should unicast an objection to the
originator of an ABT_INIT multicast in either of the
following situations: the router has a smaller IP address,
and has itself sent an ABT_INIT multicast for the same

4 One periodic timer is sufficient for all pending ABT groups. Moreover,
the ANYCAST timer can be made adaptive to allow fast anycast adver-
tisements after a long period with low join-leave activity.
5 Recall that ACBT is an extension to CBT. This group is defined by CBT
and has been assigned the address 224.0.0.15. The group is used for
purposes that are not of interest in the context of this paper. ABT uses
this group to perform the serialization and the merge processes.
6 The administrator can easily configure the routers with an estimate of
the average RTT. The estimate need not be very accurate.

ABT group, or the router is the root of an ABT that has the
same multicast address.

The mechanism described above breaks ties among
multiple routers trying to initialize the same ABT by
favoring the router with the smaller IP address.

Even if the serialization mechanism fails and two
routers decide to be roots for the same multicast group, our
design provides a mechanism for them to discover the
multicast forest and merge it into one tree (section 4.5).

4.3 Pruning
An ABT is pruned both downstream-to-upstream and
upstream-to-downstream. The former happens whenever a
non-root router loses all of its children (and it is similar to
CBT). The latter occurs when a root that has no directly
attached members loses all of its children except one. In
this case the root is no longer needed to connect the tree
and can resign, leaving its position to its only child. To do
so, the root leaves the anycast group, sends to its child a
ROOT_QUIT message, and waits for a
ROOT_QUIT_ACK. The root keeps trying to resign as
long as it thinks it is connected to its child. Similarly to
CBT, the root discovers loss of connectivity from the
absence of echo messages and reacts by flushing the tree.7

A child that receives a ROOT_QUIT from its parent
replies by a ROOT_QUIT_ACK and declares itself a root.

This mechanism helps the tree to move flexibly in the
domain and reshape itself according to the changes in the
group topology.

4.4 Maintenance
Tree maintenance is performed as in CBT. The only
difference is that a flush message causes the receiver to
leave the corresponding anycast group, before it
propagates the flush downstream.

4.5 Healing from a network partition
In contrast to core-based trees, where a network partition
prevents all senders and receivers separated from the core
from communicating, ABT enables senders and receivers
in a partition to communicate on a local tree and merges
these trees quickly when the partition heals. To discover
other instances of a multicast tree, ABT root routers listen
to the multicast group for Domain Wide Reports [12].8 If a
root hears its group reported by another router that has a
smaller unicast address, it joins that router as if it were
joining a core. More precisely, this root sends a
ROOT_JOIN_REQUEST towards the root with the

7 Flush and echo messages are defined by the CBT protocol [3].
8 Domain Wide Reports are periodic messages multicasted by core routers
or ABT roots to report their groups. They play a role in integrating intra-
domain multicast routing with inter-domain multicast routing.

smaller unicast address, to be referred to hereafter as the
preferred root. On receiving this message, routers that do
not have an entry for this multicast group establish a
transient state for the group and propagate the message
towards the preferred root. Routers that have an entry for
this group check their tables, and if their corresponding
root matches the preferred root, they acknowledge the join
back causing the transient branch to be confirmed.9 If an
on-tree router receives a ROOT_JOIN_REQUEST and
upon checking its table finds that the root of its tree differs
from the preferred root, it quits its parent, sets up a
transient join state, then propagates the join toward the
preferred root. Eventually, the ROOT_JOIN_REQUEST
either hits an on-tree router whose root is the preferred one,
or it is received by the preferred root itself. In both cases
the router acknowledges the request. Once a router
receives a ROOT_JOIN_ACK for which it has a transient
state, it confirms the state, propagates the ack down-
stream, and if it has not done it already, it starts advertising
itself as a member of the associated anycast group. On the
other hand, if a transient ROOT_JOIN_REQUEST state
times out at any non-root router which has children, the
router sends a flush message to all of its children, and stops
advertising itself as a member of the corresponding anycast
group.

4.6 Forwarding Data packets
An on-tree router forwards a multicast packet over all the
tree edges except the one on which the packet arrived. It
does not accept multicast traffic delivered over an off-tree
link. The router accepts all anycast packets addressed to
the associated anycast group, decapsulates them and
propagates them over all its on-tree interfaces.

9 On-tree routers learn the IP-address of the root from the join ack they
receive when they become attached to the tree.

5 Discussion and Evaluation

This section analyzes the overheads and benefits of the
ACBT protocol, both of which are closely related to the
characteristics of ABT trees.

5.1 Overheads
We identify the following as potential sources of overhead
in the system:

5.1.1 The effect of ABT on anycast routing
 Routers in an ABT domain route the supporting anycast
addresses and grant them entries in their routing tables.
This puts some overhead on anycast routing. However, the
design enables each domain to control the anycast
overhead to stay within the limit of the available routing
resources. First, by controlling ACBT’s operating point the
domain controls the growth of the routing tables. More
precisely, ACBT operates between 2 extreme points. At
one extreme, all of the multicast groups build ABTs. At the
other extreme, all groups build CBTs. The closer the
operating point is to the case where all trees are ABTs, the
greater the reduction in bandwidth and traffic
concentration. A domain controls the exact operating point
by choosing the maximum number of ABTs and the
bandwidth threshold beyond which a group builds an ABT.
Second, in addition to controlling the growth in the routing
tables, the domain controls the anycast dynamics using the
ANYCAST timer so that they never overwhelm the
routers.

 In practice, we expect high bandwidth groups to
generate most of the multicast traffic in a domain. Most
domains will be able to provide the majority of these high
bandwidth groups with ABTs for the following reasons:
1- Internal routers in a domain usually have small routing
tables and do not suffer from lack of memory or CPU
cycles.
2- The number of high bandwidth groups is limited by the
domain’s bandwidth capacity, so the absolute number of
such groups should not be large (e.g., a link can carry a
limited number of video sessions).
3- The overhead of anycast routing is not large. Anycast
addresses are routed through the domain’s unicast routing
protocol. In domains that use RIP [17], the anycast
addresses get advertised through RIP’s periodic updates
and do not generate any additional traffic. In domains that
use OSPF [19], which generates triggered updates, the
anycast routes might occasionally generate additional
messages when there are no other routing changes in the
domain. Fortunately, the fact that the anycast route is the
only change to report means that the routing is stable
enough and routers have resources to process the
messages.

QUIT (2)

ROOT_JOIN_
ACK (5)

ROOT_JOIN_ACK (4)

ROOT_JOIN _REQUEST(1)
Root

ROOT_JOIN_
REQUEST (3)

Preferred
Root

Figure 4: An illustration of the merge process
Numbers next to messages indicate their order

 5.1.2 Negligible delay in initializing ABTs
 The serialization mechanism introduces a small delay in
initializing a multicast tree (twice the domain’s average
RTT). However, this delay constitutes a negligible fraction
of the initialization latency, which is mostly caused by
multicast address allocation and advertisement. Even if
future solutions reduce the time for address allocation and
announcement, the absolute delay for the serialization
should be small enough to satisfy all or most applications.

 5.1.3 Consumption of an anycast address per ABT
 An ABT consumes both a multicast and an anycast
address. However, the domain controls the number of
anycast groups to stay within the limit of the available
anycast addresses. Moreover, since ACBT is an intra-
domain multicast protocol, the anycast addresses it uses
need not be unique and can be reused in other domains.

5.2 Advantages
The design has the following advantages:

5.2.1 Alleviation of traffic concentration
The most difficult problem with shared tree protocols is
traffic concentration at a core or rendezvous point. The
problem can happen at two levels. First, different sources
send simultaneously to the same group and cause
congestion at the core. Second, multiple multicast groups
are mapped to the same core causing their trees to
unnecessarily share some links around the core, and their
packets to be delivered over the same links. By using
ABTs for groups with high bandwidth requirements,
ACBT alleviates traffic concentration at both levels. By
reproducing the scenario in Figure 1 and comparing it
against an ABT approach, Figure 5 illustrates how ABT
solves traffic concentration caused by all sources
addressing their packets to the core. Similarly, Figure 6-a

shows two high bandwidth groups mapped to the same
core router and overloading one of the links. Figure 6-b
shows the same setting with ABTs, which achieves a more
balanced traffic distribution.

5.2.2 Reduction in consumed bandwidth
By using ABTs for high bandwidth groups, ACBT consid-
erably reduces the overall consumed bandwidth. ABT
attempts always to build the shortest possible branch.
Therefore, its bandwidth consumption on average is much
better than other shared trees. This characteristic is par-
ticularly important for applications that consume a large
amount of bandwidth such as video sessions. Figure 7 is a
reproduction of the scenario in Figure 2 with both CBT
and ABT. It shows that by using ABT we solve the bad
core placement problem and build shorter and more effi-
cient trees.

5.2.3 Robustness
Because of the distributed nature of its design, an ABT is
more robust than other shared trees. First, there is no
single point of failure, as the core is for other shared trees.
Second, ABT trees do not rely on a bootstrap router (BSR)
to locate their cores [10], and consequently do not fear a
mistake made by a BSR that harms all the multicast
sessions in the domain. Third, in contrast to core-based
trees, where a network partition prevents all senders and
receivers separated from the core from communicating,
ABT enables senders and receivers in a partition to
communicate on a local tree and merges these trees quickly
when the partition heals (as quickly as the time it takes to
send a domain wide report and join the preferred root).
This high robustness indicates that a domain might decide
to build ABTs for some low bandwidth multicast groups
based on their fault-tolerance requirements.

Receiver

Router

Sender

Off-tree
link

On-tree
link

(b) Same scenario in Figure 1 with ABT
In ABT each sender addresses his packets to the nearest on-tree

router

Core

(a) Reproduction of Figure 1
In CBT all senders address their packets to the core causing

congestion.
Figure 5: ABT solves traffic concentration caused by multiple senders addressing their traffic to the core router

5.2.4 Reduction in average delay and join latency
ABT reduces average propagation delay and join latency
since packets travel along the shortest path connecting a
source to a tree and are delivered over a small size tree
with short branches. In addition, it reduces the queuing
delay because it reduces traffic concentration.

5.2.5 Fanout control
In ABT, a router can control its fanout to some extent by
leaving the anycast group. This would prevent the router
from attracting additional join requests. However, the
router might still receive joins if it is on the shortest path to
other on-tree routers.

6 Simulation

This section provides a quantitative description of the
potential improvement perceived when ABT is used. Our

simulation shows that ABT reduces traffic concentration
by 60% and decreases the average bandwidth
consumption by 25%.

6.1 Simulation Environment
The simulations are carried out in ns2 [20] using our own
ABT and CBT modules. Our CBT module is based on
CBTv2’s specifications described in RFC 2189.10 Note that
the simulations compare all groups using CBTs to all
groups using ABTs. The actual performance improvement

10 In an earlier CBT proposal described in [2], packets sent toward the
core carried an IP option, allowing the first on-tree router on the path to
the core to forward them using native multicast. This can reduce the off-
tree portion of the routes in CBT. However, this approach was abandoned
because IP options are not widely implemented and can slow down
packet processing considerably. We have chosen to carry out our per-
formance comparison using the more recent version of CBT (version 2).
Nonetheless, ABT would still outperform the earlier CBT as it builds
more efficient trees and uses a shorter off-tree path.

Receiver

Router

Sender

Off-tree
link

On-tree
link

(b) Same scenario in ABT but there is no concentration because
each sender addresses his packets to the nearest on-tree router

Core

(a) Traffic concentration in CBT caused by mapping multiple
groups to the same core router.

Figure 6: ABT solves traffic concentration caused by mapping multiple groups to the same core

Receiver

Router

Sender

Off-tree
link

On-tree
link

(b) Same scenario with ABT
ABT solves the poor core placement problem and builds

smaller trees

Core

(a) Reproduction of Figure 2
In CBT, the core is located faraway from the receivers, which

causes the tree to grow unnecessarily large

Figure 7: ABT solves the poor core placement problem

of ACBT will depend on the percentage of multicast traffic
that uses ABT. While it is impossible to quantify this pre-
cisely, as explained above in section 5.1.1, we expect most
multicast traffic to use ABT.

The graphs used in the simulation are generated using
the Georgia Tech ITM topology generator [5,24], which
generates topologies that resemble typical networks. We
used both the Doar-Leslie and the Waxman edge connec-
tion methods to generate multiple 50-node and 100-node
graphs. The average edge degree is around 3 and the num-
ber of bicomponents is in the range {11-28}. These pa-
rameters are chosen based on the information in [24].

The simulation uses a static anycast routing. We think
this is a justified simplification given that the current join-
leave statistics collected over the MBone [1] have a much
longer time scale than the unicast/anycast routing updates.
Even if the join dynamics had a similar time scale, our
simplification would still be accurate provided that con-
secutive joins are not generated by closely located receiv-
ers. If future changes in multicast dynamics make static
anycast routing a poor approximation, then the advantage
of ABT may be reduced but it will still outperform CBT.

Senders and receivers are chosen randomly among the
domain’s nodes. We choose the CBT core to be the node
with the highest edge degree. In case there are more than
one of them, we choose the one closer to the center of the
graph. This choice is the best given that one doesn’t know
the future group topology [4]. A random choice of CBT’s
core would have increased the improvement perceived
when ABT is used instead of CBT.

6.2 Traffic Concentration
We define a flow to be the stream of packets from a
particular sender to a multicast group. Traffic
concentration is measured by the maximum number of
flows traversing a unidirectional link (the load of the most
congested link.) Each run uses 76 groups with 7 senders
and 7 receivers per group. We ran 10 simulations. The
results, which are given in table 1, show that ABT reduces
traffic concentration by 60%.

CBT
Max link load

ABT
Max link load

Ratio
ABT/CBT

432 153 0.35
430 153 0.36
428 179 0.42
446 186 0.41
445 186 0.41
446 193 0.43
444 193 0.43
425 186 0.44
427 193 0.45
432 193 0.45

Figure 8: Traffic distribution in CBT (a) and ABT (b)

Number of flows traversing a link in ABT

(b) Traffic Distribution in ABT. The maximum link load
is significantly less than CBT (186 flows) and it utilizes
the links fairly.

Overloaded link
(432 flows)

Under-loaded
links (0 flow)

Number of flows traversing a link in CBT

(a) Traffic Distribution in CBT. It shows high traffic
concentration on some links (432 flows) while others are
underutilized.

Table 1: The ratio of the maximum link load in
ABT to that in CBT.

Figure 8 shows the traffic distribution in CBT and ABT
for the first entry in Table 1. Note that in the CBT simula-
tion some links are overloaded (432 flows) while others
are underutilized (0 flows). On the other hand, the ABT
simulation shows good link utilization. The maximum link
load has decreased to less than half its value with CBT,
which decreases the possibility of congestion. Further-
more, the ABT simulation shows no underutilized links.

6.3 Bandwidth and Delay
This simulation uses 2 sets of groups. The first set has a
group size of 10% the domain size. The second set has a
group size of 20% the domain size. We run 25 different
simulations in each set to measure the average delay, the
maximum delay, and the tree’s cost for both CBT and
ABT.

Figure 9 is a histogram of the ratio of the bandwidth
consumed by ABTs to that consumed by the corresponding
CBTs. (ABT_BW/CBT_BW). The Figure exhibits that ABT
reduces average bandwidth consumption by 25%. This
reduction constitutes a significant savings especially for
high bandwidth groups.

Figure 10 and Figure 11 are histograms of the ratios of
the average and maximum propagation delay in ABT to
their counterparts in CBT. They reveal that ABT has better
delay performance than CBT. Note that we simulate only
the propagation delay. In real life pathological delay cases
are mostly due to queuing delay and retransmission delay.
Since ABT alleviates congestion by eliminating traffic
concentration around the core we expect it to improve
delay significantly, even more than what our figures
indicate. Although ns enables us to simulate queuing and
retransmission delays, we chose not to do so because such
simulation would heavily depend on the traffic pattern, the
queuing model, the maximum queue size and the
retransmission timeout. Instead, we simulate the
propagation delay, which is a lower bound on the expected
improvement.

7 Related Work

The problem of building the best shared-multicast-tree has
been repeatedly investigated in the multicast literature.
Wall proposed the use of shared trees routed at a core
router [22]. His approach, which exhibits a good
compromise between simplicity and efficiency, was
adopted by all of the known shared tree multicast routing
protocols such as PIM-SM [9] and CBT [2,3]. On the other
hand, Doar & Leslie proposed in [6] what they call “the
naïve multicast algorithm”, which computes the multicast
route by combining the shortest path across initial
members of the group, then joining new members to the
nearest attachment point on the tree. However, the
algorithm assumes a global knowledge of the network
topology, which is usually unavailable.

On the other hand, Estrin and Wei studied the tradeoffs
between different multicast trees [23]. Their results show
that, on average, core-based trees exhibit good
performance; however, they might suffer severe
congestion caused by traffic concentration around the core
router.

Zegura et al. studied a variety of methods for core
selection [4,8]. They concluded that a poor core placement

Figure 9: A Histogram of bandwidth consumption in
ABT compared to its counterpart in CBT

ABT_BW / CBT_BW

C
ou

nt

0

2

4

6

8

10

12

0.5 0.65 0.8 0.95 1.1 1.25 1.4

Figure 10: A Histogram of average delay in ABT
compared to its counterpart in CBT

ABT_Average_Delay / CBT_Average_Delay

C
ou

nt

0.5 0.65 0.8 0.95 1.1 1.25 1.40

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

ABT_Max_Delay/ CBT_Max_Delay
C

ou
nt

0.5 0.65 0.8 0.95 1.1 1.25 1.4

Figure 11: A Histogram of maximum delay in ABT
compared to its counterpart in CBT

degrades performance significantly. They proposed core
migration to overcome the problem. However, core
migration requires periodically evaluating the performance
of candidate cores and electing the core with the best
performance, which results in a considerable overhead in
terms of state and bandwidth. This paper does not address
issues such as how senders and new receivers learn about
the new core and how to migrate the core without
disturbing the communication.

8 Conclusion

In this paper, we show that substantial improvement in
performance and reliability can be achieved by regarding a
multicast group as a network region and using anycast to
access it along the shortest path.

We introduce the anycast-based tree (ABT), a novel ar-
chitecture for building efficient shared multicast trees.
ABT is a non-core tree; thus, it does not suffer from the
traditional problems exhibited by core-based trees, such as
traffic concentration and bad core placement. Moreover,
ABT is more robust than other shared multicast trees.

To build an ABT, we make all the on-tree routers join
the same anycast group. As a consequence, the multicast
tree appears to all off-tree routers as one addressable net-
work entity. We use this property to direct data packets
and join requests along the shortest path to the tree, de-
creasing bandwidth consumption and join latency. Our
simulation shows that ABT reduces traffic concentration
by 60% and decreases average bandwidth consumption by
25%. Although our design uses IP-anycast, the absence of
the service from IPv4 does not hinder the deployment of
ABT in the current Internet. ABT works correctly in a
domain that does not support anycast explicitly.

 In addition, the paper extends the Core based Tree
multicast protocol with an ABT mode. The resultant
protocol, which we call ACBT, builds ABTs for high
bandwidth multicast groups and CBTs for low bandwidth
multicast groups. As a result, ACBT conserves the
desirable features of the CBT protocol while reducing
bandwidth consumption and alleviating traffic
concentration.

Acknowledgments

The author is indebted to John Wroclawski for extensive
discussions that greatly improved this paper. Also, the
author thanks Lee Breslau, Chandrasekhar Boyapati,
Charles Blake, Dorothy Curtis, Mangesh Kasbekar, and the
Global Internet reviewers for their constructive comments
on different versions of this paper.

References

1. K. Almeroth and M. Ammar, “Multicast Group Behavior in
the Internet's Multicast Backbone (MBone)", IEEE
Communications, Jun. 1997.

2. A. Ballardie, P. Francis, and J. Crowcroft, “Core Based
Trees (CBT) an Architecture for Scalable Multicast
Routing,” In Proc. of SIGCOMM’93, 1993.

3. A. Ballardie, “Core Based Trees (CBT version 2) Multicast
Routing --Protocol Specifications--,” RFC 2189, Sep. 1997.

4. K. Calvert, E. Zegura, and M. Donahoo, “Core Selection
Methods for Multicast Routing,” In Proc of ICCCN’95,
1995.

5. K. Calvert, M. Doar and E. W. Zegura, "Modeling Internet
Topology," IEEE Communications, Jun. 1997.

6. S. Deering, “Multicast Routing in a Datagram
Internetwork,” PhD Thesis, Sanford Univ., Dec. 1991.

7. M. Doar and I. Leslie, “How Bad is Naïve Multicast
Routing?,” In Proc. of INFOCOM’93, 1993.

8. M. Donahoo, E. Zegura, “Core Migration for Dynamic
Multicast Routing,” In Proc. of ICCCN’96, 1996.

9. D. Estrin et al, “Protocol Independent Multicast (PIM)
Sparse Mode” Internet-Draft, 1996.

10. D. Estrin et al., “A Dynamic Bootstrap Mechanism for
Rendezvous-based Multicast Routing,” In Proc.
INFOCOM’99, 1999.

11. W. Fenner, “Internet Group Management Protocol version 2
(IGMPv2),” Internet-Draft, 1996.

12. W. Fenner, “Domain Wide Multicast Group Membership
Reports,” Internet-Draft, Aug. 1999.

13. M. Handley, “On Scalable Internet multimedia
Conferencing,” PhD Thesis, University College London,
Nov. 1997.

14. R. Hinden, S. Deering, “IP version 6 Addressing
Architecture,” RFC 2373, Jul. 1998

15. M. Imase and B. M. Waxman, “Dynamic Steiner Tree
Problem,” SIAM Journal Disc. Math, Aug. 1991.

16. D. Katabi and J. Wroclawski, “A Framework for Global IP-
Anycast,” Internet-Draft, Jun. 1999.

17. G. Malkin, “RIP Version 2,” RFC 1723, Nov. 1994.
18. D. Meyer, “Some Issues for an Inter-domain Multicast

Routing Protocol,” Internet-Draft, Nov. 1997.
19. J. Moy, “OSPF Version 2,” RFC 2328, Apr. 1998.
20. Network Simulator – ns (version 2), http://www-

mash.cs.berkeley.edu/ns/
21. C. Partridge, T. Mendez, and W. Milliken, “Host Anycasting

Service,” RFC 1546, Nov. 1993.
22. D. Wall, “Mechanisms for Broadcast and Selective

Broadcast,” PhD Thesis, Stanford Univ., Jun. 1980.
23. L.Wei and D. Estrin, “The Trade-offs of Multicast Trees and

algorithms,” In Proc. of ICCC’94, 1994.
24. E. W. Zegura, K. Calvert and S. Bhattacharjee, "How to

Model an Internetwork," In Proc. of INFOCOM '96, 1996.

